半平面的交,二分的方法;

 #include<cstdio>
#include<algorithm>
#include<cmath>
#define eps 1e-6
using namespace std; int dcmp(double x)
{
return fabs(x) < eps ? : (x > ? : -);
} struct Point
{
double x;
double y;
Point(double x = , double y = ):x(x), y(y) {}
};
typedef Point Vector; Vector operator + (Point A, Point B)
{
return Vector(A.x + B.x, A.y + B.y);
} Vector operator - (Point A, Point B)
{
return Vector(A.x - B.x, A.y - B.y);
} Vector operator * (Point A, double p)
{
return Vector(A.x * p, A.y * p);
} Vector operator / (Point A, double p)
{
return Vector(A.x / p, A.y / p);
}
double dot(Point a,Point b)
{
return a.x*b.x+a.y*b.y;
}
double cross(Point a,Point b)
{
return a.x*b.y-a.y*b.x;
} Vector nomal(Vector a)
{
double l=sqrt(dot(a,a));
return Vector(-a.y/l,a.x/l);
} struct line
{
Point p;
Vector v;
double ang;
line() {}
line(Point p,Vector v):p(p),v(v)
{
ang=atan2(v.y,v.x);
}
bool operator<(const line &t)const
{
return ang<t.ang;
}
}; bool onleft(line l,Point p)
{
return (cross(l.v,p-l.p)>);
} Point getintersection(line a,line b)
{
Vector u=a.p-b.p;
double t=cross(b.v,u)/cross(a.v,b.v);
return a.p+a.v*t;
} int halfplanintersection(line *l,int n,Point *poly)
{
sort(l,l+n);
int first,last;
Point *p=new Point[n];
line *q=new line[n];
q[first=last=]=l[];
for(int i=; i<n; i++)
{
while(first<last && !onleft(l[i],p[last-]))last--;
while(first<last && !onleft(l[i],p[first]))first++;
q[++last]=l[i];
if(fabs(cross(q[last].v,q[last-].v))<eps)
{
last--;
if(onleft(q[last],l[i].p))q[last]=l[i];
}
if(first<last)p[last-]=getintersection(q[last-],q[last]);
}
while(first<last && !onleft(q[first],p[last-]))last--;
if((last-first )<=)return ;
p[last]=getintersection(q[last],q[first]);
int m=;
for(int i=first; i<=last; i++)poly[m++]=p[i];
return m;
} Point p[],poly[];
line l[];
Point v[],v2[];
int main()
{
int n,m;
double x,y;
while(scanf("%d",&n)&&n)
{
for(int i=; i<n; i++)
{
scanf("%lf%lf",&x,&y);
p[i]=Point(x,y);
}
for(int i=; i<n; i++)
{
v[i]=p[(i+)%n]-p[i];
v2[i]=nomal(v[i]);
}
double left=0.0,right=20000.0;
while(right-left>eps)
{
double mid=(left+right)/;
for(int i=; i<n; i++)
l[i]=line(p[i]+v2[i]*mid,v[i]);
m=halfplanintersection(l,n,poly);
if(!m)right=mid;
else left=mid;
}
printf("%.6lf\n",left);
}
return ;
}

uva 1396 - Most Distant Point from the Sea的更多相关文章

  1. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  2. UVA 3890 Most Distant Point from the Sea(二分法+半平面交)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11358 [思路] 二分法+半平面交 二分与海边的的距离,由法向量可 ...

  3. 1396 - Most Distant Point from the Sea

    点击打开链接 题意: 按顺序给出一小岛(多边形)的点 求岛上某点离海最远的距离 解法: 不断的收缩多边形(求半平面交) 直到无限小 二分收缩的距离即可 如图 //大白p263 #include < ...

  4. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  5. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  6. 【POJ】【3525】Most Distant Point from the Sea

    二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...

  7. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  8. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  9. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

随机推荐

  1. Web Services之SOAP学习

    Web Services之SOAP [toc] 什么是SOAP SOAP(Simple Object Access Protocol)简单对象访问协议是在分散或分布式的环境中交换信息的简单的协议,是一 ...

  2. C++学习(四)

    一.拷贝构造函数和拷贝赋值运算符1.拷贝构造:用一个已有的对象,构造和它同类型的副本对象——克隆.2.形如class X {  X (const X& that) { ... }};的构造函数 ...

  3. HDU-1002(简单大数加法)

    A + B Problem II Problem Description I have a very simple problem for you. Given two integers A and ...

  4. CentOS7下用jdk1.7编译hadoop-2.7.1全过程详解

    说实话,本人编译hadoop的过程比较曲折,但收获也很多,下面系统介绍一下CentOS7下编译hadoop-2.7.1的全过程吧. 先说明,32位Linux操作系统可以直接下载编译好的hadoop使用 ...

  5. File类最基础知识

    package File; /** * 创建一个文件: * 判断是否存在,若存在,则创建,若不存在,则删除,最后输出文件是否存在. */ import java.io.File; import jav ...

  6. Ajax编程技术

    AJAX:”Asynchronous JavaScript and XML” 中文意思:异步JavaScript和XML. 指一种创建交互式网页应用的网页开发技术. 不是指一种单一的技术,而是有机地利 ...

  7. 广告系统中weak-and算法原理及编码验证

    wand(weak and)算法基本思路 一般搜索的query比较短,但如果query比较长,如是一段文本,需要搜索相似的文本,这时候一般就需要wand算法,该算法在广告系统中有比较成熟的应 该,主要 ...

  8. RD / RMDIR Command

    Quote from: http://ss64.com/nt/rd.html RD Delete folder(s) Syntax RD pathname RD /S pathname RD /S / ...

  9. 数位DP入门Ural1057

    CF一战让我觉得很疲倦,所以今天感觉很慢. 昨天解D题时候,因为太累,根本连题目都没看,今天看了之后感觉不会做,听闻是数位DP问题. 有某神说过,DP的功力建立在刷过的题上,我真的毫无功力可言. 介绍 ...

  10. javaIo流实际应用

    /*查看目录下所有的文件*/ package cn.file; import java.io.File; public class Text2 { public static void main(St ...