Time Limit: 1000MS
Memory Limit: 10000K

Total Submissions: 947
Accepted: 345
Special Judge

Description

The Department of Recreation has decided that it must be more profitable, and it wants to sell advertising space along a popular jogging path at a local park. They have built a number of billboards (special signs for advertisements) along the path and have decided to sell advertising space on these billboards. Billboards are situated evenly along the jogging path, and they are given consecutive integer numbers corresponding to their order along the path. At most one advertisement can be placed on each billboard.
A particular client wishes to purchase advertising space on these billboards but needs guarantees that every jogger will see it's advertisement at least K times while running along the path. However, different joggers run along different parts of the path.
Interviews with joggers revealed that each of them has chosen a section of the path which he/she likes to run along every day. Since advertisers care only about billboards seen by joggers, each jogger's personal path can be identified by the sequence of billboards viewed during a run. Taking into account that billboards are numbered consecutively, it is sufficient to record the first and the last billboard numbers seen by each jogger.
Unfortunately, interviews with joggers also showed that some joggers don't run far enough to see K billboards. Some of them are in such bad shape that they get to see only one billboard (here, the first and last billboard numbers for their path will be identical). Since out-of-shape joggers won't get to see K billboards, the client requires that they see an advertisement on every billboard along their section of the path. Although this is not as good as them seeing K advertisements, this is the best that can be done and it's enough to satisfy the client.
In order to reduce advertising costs, the client hires you to figure out how to minimize the number of billboards they need to pay for and, at the same time, satisfy stated requirements.

Input

The first line of the input contains two integers K and N (1 <= K, N <= 1000) separated by a space. K is the minimal number of advertisements that every jogger must see, and N is the total number of joggers.
The following N lines describe the path of each jogger. Each line contains two integers Ai and Bi (both numbers are not greater than 10000 by absolute value). Ai represents the first billboard number seen by jogger number i and Bi gives the last billboard number seen by that jogger. During a run, jogger i will see billboards Ai, Bi and all billboards between them.

Output

On the fist line of the output file, write a single integer M. This number gives the minimal number of advertisements that should be placed on billboards in order to fulfill the client's requirements. Then write M lines with one number on each line. These numbers give (in ascending order) the billboard numbers on which the client's advertisements should be placed.

Sample Input

5 10
1 10
20 27
0 -3
15 15
8 2
7 30
-1 -10
27 20
2 9
14 21

Sample Output

19
-5
-4
-3
-2
-1
0
4
5
6
7
8
15
18
19
20
21
25
26
27

Source

Northeastern Europe 1999

【题解】

          ①典型的区间前缀和约束的差分约束问题

          ②处理负数坐标可以加上一个很大的整数

#include<queue>
#define _ 10010
#include<stdio.h>
#include<algorithm>
#define inf 1000000007
#define go(i,a,b) for(int i=a;i<=b;i++)
#define fo(i,a,x) for(int i=a[x],v=e[i].v;i;i=e[i].next,v=e[i].v)
using namespace std;
const int N=30003;
queue<int>q;bool inq[N];
struct E{int v,next,w;}e[N<<1];
int n,K,k=1,a[N],b[N],head[N],S=1e9,T,d[N];
void ADD(int u,int v,int w){e[k]=(E){v,head[u],w};head[u]=k++;} void Build()
{
go(i,1,n)scanf("%d%d",a+i,b+i),a[i]+=_,b[i]+=_;
go(i,1,n)if(a[i]>b[i])a[i]^=b[i]^=a[i]^=b[i];
go(i,1,n)ADD(a[i]-1,b[i],min(b[i]-a[i]+1,K));
go(i,1,n)S=min(S,a[i]-1),T=max(T,b[i]);
go(i,S,T)ADD(i,i-1,-1);
go(i,S,T)ADD(i,i+1,0);
} void SPFA()
{
go(i,S,T)d[i]=-inf;d[S]=0;q.push(S);int u;
while(!q.empty())
{
inq[u=q.front()]=0;q.pop();
fo(i,head,u)if(d[u]+e[i].w>d[v])
{
d[v]=d[u]+e[i].w;
!inq[v]?q.push(v),inq[v]=1:1;
}
}
printf("%d\n",d[T]);
go(i,S,T)if(d[i]>d[i-1])printf("%d\n",i-_);
} int main()
{
scanf("%d%d",&K,&n); Build(); SPFA(); return 0;
}//Paul_Guderian

.

【POJ 2572 Advertisement】的更多相关文章

  1. 【POJ 3169 Layout】

    Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 12565Accepted: 6043 Description Like every ...

  2. 【POJ 1201 Intervals】

    Time Limit: 2000MSMeamory Limit: 65536K Total Submissions: 27949Accepted: 10764 Description You are ...

  3. 【POJ 3279 Fliptile】开关问题,模拟

    题目链接:http://poj.org/problem?id=3279 题意:给定一个n*m的坐标方格,每个位置为黑色或白色.现有如下翻转规则:每翻转一个位置的颜色,与其四连通的位置都会被翻转,但注意 ...

  4. 【POJ 3614 Sunscreen】贪心 优先级队列

    题目链接:http://poj.org/problem?id=3614 题意:C头牛去晒太阳,每头牛有自己所限定的spf安全范围[min, max]:有L瓶防晒液,每瓶有自己的spf值和容量(能供几头 ...

  5. 【POJ 1182 食物链】并查集

    此题按照<挑战程序设计竞赛(第2版)>P89的解法,不容易想到,但想清楚了代码还是比较直观的. 并查集模板(包含了记录高度的rank数组和查询时状态压缩) *; int par[MAX_N ...

  6. bzoj 2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MB Description ftiasch是个十分受女生欢迎的同学,所以 ...

  7. 【POJ】【2096】Collecting Bugs

    概率DP/数学期望 kuangbin总结中的第二题 大概题意:有n个子系统,s种bug,每次找出一个bug,这个bug属于第 i 个子系统的概率为1/n,是第 j 种bug的概率是1/s,问在每个子系 ...

  8. 【链表】BZOJ 2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 382  Solved: 111[Submit][S ...

  9. BZOJ2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 284  Solved: 82[Submit][St ...

随机推荐

  1. 05 redis(进阶)

    redis 阶段一.认识redis 1.什么是redis Redis是由意大利人Salvatore Sanfilippo(网名:antirez)开发的一款内存高速缓存数据库.Redis全称为:Remo ...

  2. ScriptManager和UpdatePanel用法 (ajax)

    ScriptManager和UpdatePanel控件联合使用可以实现页面异步局部更新的效果.其中的UpdatePanel就是设置页面中异 步局部更新区域,它必须依赖于ScriptManager存在, ...

  3. 复位自动ID的问题有兩種方法

    复位自动ID的问题 有兩種方法:      方法1:      truncate   table   你的表名   --這樣不但將數據刪除,而且可以重新置位identity屬性的字段.         ...

  4. C++11中std::bind的使用

    std::bind: Each argument may either be bound to a value or be a placeholder: (1).If bound to a value ...

  5. 程序在Linux下前后台切换

    程序在Linux下前后台切换 一.为什么要使程序在后台执行 背景:SecureCRT远程连接到linux主机,使程序在后台运行有以下好处: (1)本机关机不影响linux主机运行 (2)不影响计算效率 ...

  6. spring、spring-data-redis整合使用

    一.Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API. 从2010年3月15日起,Redis的开发工作由VMwa ...

  7. es2017中的async和await要点

    1. async和await最关键的用途是以同步的写法实现了异步调用,是对Generator异步方法的简化和改进.使用Generator实现异步的缺点如下: 得有一个任务执行器来自动调用next() ...

  8. [转]Git,SVN的优缺点及适合的范围,开源项目?公司项目?

    使用git不久,粗浅理解: 1)适用对象不同.Git适用于参与开源项目的开发者.他们由于水平高,更在乎的是效率而不是易用性.Svn则不同,它适合普通的公司开发团队.使用起来更加容易. 2)使用的场合不 ...

  9. 原生js实现五子棋

    为什突然做这个,因为这是个笔试题,拖了一个月才写(最近终于闲了O(∩_∩)O),废话不多说,说说这个题吧 题目要求 编写一个单机[五子棋]游戏,要求如下: 1.使用原生技术实现,兼容 Chrome 浏 ...

  10. java 泛型类转型

    public class NeedCasting { @SuppressWarnings("unchecked") public void f(String[] args)thro ...