POJ3525-Most Distant Point from the Sea(二分+半平面交)
| Time Limit: 5000MS | Memory Limit: 65536K | |||
| Total Submissions: 3955 | Accepted: 1847 | Special Judge | ||
Description
The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point
is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.
In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex
polygons.
Input
The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.
| n | ||
| x1 | y1 | |
| ⋮ | ||
| xn | yn |
Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.
n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xi, yi)–(xi+1, yi+1)
(1 ≤ i ≤ n − 1) and the line segment (xn, yn)–(x1, y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of
the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.
You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.
The last dataset is followed by a line containing a single zero.
Output
For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5).
You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.
Sample Input
4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0
Sample Output
5000.000000
494.233641
34.542948
0.353553
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
#define REP(_,a,b) for(int _ = (a); _ < (b); _++)
#define sz(s) (int)((s).size())
typedef long long ll;
const double eps = 1e-9;
const int maxn = 100*2+10;
struct Point{
double x,y;
Point(double x=0.0,double y = 0.0):x(x),y(y){}
};
vector<Point> vP;
typedef Point Vector;
Point poly[maxn];
vector<Vector> vV1,vV2;
struct Line {
Point P;
Vector v;
double ang;
Line(){}
Line(Point P,Vector v):P(P),v(v){
ang = atan2(v.y,v.x);
}
bool operator <(const Line&L) const{
return ang < L.ang;
}
};
Line L[maxn];
Vector operator + (Vector A,Vector B) {
return Vector(A.x+B.x,A.y+B.y);
}
Vector operator - (Vector A,Vector B){
return Vector(A.x-B.x,A.y-B.y);
}
Vector operator * (Vector A,double p){
return Vector(A.x*p,A.y*p);
}
Vector operator / (Vector A,double p){
return Vector(A.x/p,A.y/p);
}
bool operator < (const Point &a,const Point &b){
return a.x < b.x || (a.x==a.y && a.y < b.y);
}
int dcmp(double x){
if(fabs(x) < eps) return 0;
else return x < 0? -1:1;
}
bool operator == (const Point &a,const Point &b){
return dcmp(a.x-b.x)==0&& dcmp(a.y-b.y)==0;
}
double Dot(Vector A,Vector B) {return A.x*B.x+A.y*B.y;}
double Length(Vector A) {return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B) {return acos(Dot(A,B)/Length(A)/Length(B));}
double Cross(Vector A,Vector B) {return A.x*B.y-A.y*B.x;}
Vector Rotate(Vector A,double rad) {return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }
Vector Normal(Vector A) {
double L = Length(A);
return Vector(-A.y/L,A.x/L);
}
bool OnLeft(Line L,Point p){
return Cross(L.v,p-L.P) > 0;
}
Point GetIntersection(Line a,Line b){
Vector u = a.P-b.P;
double t = Cross(b.v,u) / Cross(a.v,b.v);
return a.P+a.v*t;
}
int HalfplaneIntersection(Line* L,int n,Point* poly){
sort(L,L+n);
int first,last;
Point *p = new Point[n];
Line *q = new Line[n];
q[first=last=0] = L[0];
for(int i = 1; i < n; i++){
while(first < last && !OnLeft(L[i],p[last-1])) last--;
while(first < last && !OnLeft(L[i],p[first])) first++;
q[++last] = L[i];
if(fabs(Cross(q[last].v,q[last-1].v))<eps) {
last--;
if(OnLeft(q[last],L[i].P)) q[last] = L[i];
}
if(first<last) p[last-1] = GetIntersection(q[last-1],q[last]);
}
while(first < last && !OnLeft(q[first],p[last-1])) last--;
if(last - first <=1) return 0;
p[last] = GetIntersection(q[last],q[first]);
int m = 0;
for(int i = first; i <= last; i++) poly[m++] = p[i];
return m;
}
int n;
void init(){
vP.clear();
vV1.clear();
vV2.clear();
}
void input(){
REP(_,0,n){
double x,y;
scanf("%lf%lf",&x,&y);
vP.push_back(Point(x,y));
}
#define next(i) ((i)+1)%n
REP(_,0,n){
vV1.push_back(vP[next(_)]-vP[(_)]);
vV2.push_back(Normal(vP[next(_)]-vP[(_)]));
}
}
void solve(){
double l = 0,r = 40000;
while(r-l > eps){
double mid = (l+r)/2;
REP(_,0,n) {
L[_] = Line(vP[_]+vV2[_]*mid ,vV1[_]);
}
int m = HalfplaneIntersection(L,n,poly);
if(m==0){
r = mid;
}else{
l = mid;
}
}
printf("%.7f\n",r);
}
int main(){ while(~scanf("%d",&n) && n){
init();
input();
solve();
}
return 0;
}
POJ3525-Most Distant Point from the Sea(二分+半平面交)的更多相关文章
- poj3525Most Distant Point from the Sea(半平面交)
链接 求凸多边形内一点距离边最远. 做法:二分+半平面交判定. 二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核. 本想自己写一个向内推进..仔细一看发现自己的平面交模板上自带.. #in ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...
- POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- POJ 3525 Most Distant Point from the Sea 二分+半平面交
题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...
- poj3525 Most Distant Point from the Sea
题目描述: vjudge POJ 题解: 二分答案+半平面交. 半径范围在0到5000之间二分,每次取$mid$然后平移所有直线,判断半平面交面积是否为零. 我的eps值取的是$10^{-12}$,3 ...
- poj 3525Most Distant Point from the Sea【二分+半平面交】
相当于多边形内最大圆,二分半径r,然后把每条边内收r,求是否有半平面交(即是否合法) #include<iostream> #include<cstdio> #include& ...
- UVa 1475 (二分+半平面交) Jungle Outpost
题意: 有n个瞭望塔构成一个凸n边形,敌人会炸毁一些瞭望台,剩下的瞭望台构成新的凸包.在凸多边形内部选择一个点作为总部,使得敌人需要炸毁的瞭望塔最多才能使总部暴露出来.输出敌人需要炸毁的数目. 分析: ...
- [HNOI2012][BZOJ2732] 射箭 [二分+半平面交]
题面 BZOJ题面 思路 半平面交代码讲解戳这里,用的就是这道题 我们射箭的函数形如$y=Ax^2+Bx$ 考虑每一个靶子$(x_0,y_1,y_2)$,实际上是关于$A,B$的不等式限制条件 我们只 ...
随机推荐
- 《锋利的jQuery》读书要点笔记7——制作商城网页:网站脚本
第8章 用jQuery打造个性网站 上一节将网页的样式设计完了,现在开始用jQuery来编写网站的脚本.首先要确定的是应该完成哪些功能. 首页应该完成的功能是: 详情页: 这个页面要完成的效果是: 接 ...
- ubuntu、linux更换pip源
1.创建pip配置文件 vi ~/.pip/pip.conf 2.写入配置内容 [global] trusted-host = mirrors.aliyun.com index-url = http: ...
- RASscan
内网端口极速扫描器 软件下载地址:https://github.com/RASSec/RASscan 命令: Python Rasscan.py 网络第一个ip 网络最后一个ip
- HDU 1325 Is It A Tree?(并查集)
题目大意: 给你两个节点,前者指向后者(可以认为前者是后者的父节点),然后让你判断是否是一棵树. 解题思路: 先说说这道题和小希的迷宫(HDU1272)那道题的区别,前者给出的两个点是有方向的,而后者 ...
- 二分+Dfs【p1902】刺杀大使
题目描述--->p1902 刺杀大使 题意概括: 找一条路径,使得从第1行到第n行路径的最大值最小. 分析: 题目概括出来,很容易想到二分. 求最大值最小,因此我们可以对最大伤害值进行二分. 如 ...
- 谜题12:ABC
这个谜题要问的是一个悦耳的问题,下面的程序将打印什么呢? public class ABC{ public static void main(String[] args){ String letter ...
- 【模拟】bzoj2760 [JLOI2011]小A的烦恼
注意细节和初始化. #include<cstdio> #include<string> #include<algorithm> #include<iostre ...
- 【AC自动机+DP】USACO2012 JAN GOLD_Video Game Combos
[题目大意] 给你个模式串(每个长度≤15,1≤N≤20),串中只含有三种字母.求一长度为K(1≤K≤1000)的字符串,使得匹配数最大(重复匹配计多次),输出最大值. [解题思路] W老师给的题,然 ...
- 快速创建Django验证码
# 生成随机验证码图片 import stringfrom random import randint, samplefrom PIL import Image, ImageDraw, ImageFo ...
- 求斐波那契数的python语言实现---递归和迭代
迭代实现如下: def fab(n): n1 = 1 n2 = 1 if n<1: print("输入有误!") return -1 while (n-2)>0: n3 ...