实验要求:

Objective:

To know how to implement image enhancement for color images by histogram processing. Note that the definition of histogram for color images differs from that of histogram for gray images.

Main requirements:

Ability of programming with C, C++, or Matlab.

Instruction manual:

(a) Download the dark-stream color picture in Fig. 6.35 (this image is labeled Fig. 6.35(05) in the image gallery for Chapter 6). Convert the image to RGB (see comments at the beginning of Project 06-01). Histogram-equalize the R, G, and B images separately using the histogram-equalization program and convert the image back to jpg format.

(b) Form an average histogram from the three histograms in (a) and use it as the basis to obtain a single histogram equalization intensity transformation function. Apply this function to the R, G, and B components individually, and convert the results to jpg. Compare and explain the differences in the jpg images in (a) and (b).

本实验是对彩色图像进行直方图均衡化处理。其中,我分了两种方式对彩色图像进行处理。一种是对图像的R、G、B三个彩色分量进行直方图均衡化,另一种是将图像从RGB颜色空间转换到HSI颜色空间,使用直方图均衡化单独处理亮度I分量,随后将图像从HSI空间转换回到RGB颜色空间。对比两种处理方法的结果。

实验代码:

%%
close all;
clc;
clear all; %%
img = imread('Fig6.35(5).jpg');
figure
subplot(1,3,1);
imshow(img);
title('original image'); %% 对RGB3个通道的灰度值分别做直方图均衡化,然后再合为一幅新的图像
R = img(:, :, 1);
G = img(:, :, 2);
B = img(:, :, 3); A = histeq(R);
B = histeq(G);
C = histeq(B); img1 = cat(3, A, B, C); subplot(1,3,2);
imshow(img1);
title('histogram-equalization 1'); %% 先将RGB格式的图像转换为HSI格式的图像,然后再对亮度I做直方图均衡化,紧接着转换成RGB格式的图像 img_hsi = rgb2hsi(img);
img_hsi_i = img_hsi(:, :, 3);
img_hsi_I = histeq(img_hsi_i);
img_hsi(:, :, 3) = img_hsi_I;
img2 = hsi2rgb(img_hsi); subplot(1,3,3);
imshow(img2);
title('histogram-equalization 2');

补充:

程序中使用的一些函数,RGB和HSI颜色空间之间相互转换的程序:

hsi2rgb()函数:

function rgb = hsi2rgb(hsi)
%HSI2RGB Converts an HSI image to RGB.
% RGB = HSI2RGB(HSI) converts an HSI image to RGB, where HSI is
% assumed to be of class double with:
% hsi(:, :, 1) = hue image, assumed to be in the range
% [0, 1] by having been divided by 2*pi.
% hsi(:, :, 2) = saturation image, in the range [0, 1].
% hsi(:, :, 3) = intensity image, in the range [0, 1].
%
% The components of the output image are:
% rgb(:, :, 1) = red.
% rgb(:, :, 2) = green.
% rgb(:, :, 3) = blue. % Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
% Digital Image Processing Using MATLAB, Prentice-Hall, 2004
% $Revision: 1.5 $ $Date: 2003/10/13 01:01:06 $ % Extract the individual HSI component images.
H = hsi(:, :, 1) * 2 * pi;
S = hsi(:, :, 2);
I = hsi(:, :, 3); % Implement the conversion equations.
R = zeros(size(hsi, 1), size(hsi, 2));
G = zeros(size(hsi, 1), size(hsi, 2));
B = zeros(size(hsi, 1), size(hsi, 2)); % RG sector (0 <= H < 2*pi/3).
idx = find( (0 <= H) & (H < 2*pi/3));
B(idx) = I(idx) .* (1 - S(idx));
R(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx)) ./ ...
cos(pi/3 - H(idx)));
G(idx) = 3*I(idx) - (R(idx) + B(idx)); % BG sector (2*pi/3 <= H < 4*pi/3).
idx = find( (2*pi/3 <= H) & (H < 4*pi/3) );
R(idx) = I(idx) .* (1 - S(idx));
G(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 2*pi/3) ./ ...
cos(pi - H(idx)));
B(idx) = 3*I(idx) - (R(idx) + G(idx)); % BR sector.
idx = find( (4*pi/3 <= H) & (H <= 2*pi));
G(idx) = I(idx) .* (1 - S(idx));
B(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 4*pi/3) ./ ...
cos(5*pi/3 - H(idx)));
R(idx) = 3*I(idx) - (G(idx) + B(idx)); % Combine all three results into an RGB image. Clip to [0, 1] to
% compensate for floating-point arithmetic rounding effects.
rgb = cat(3, R, G, B);
rgb = max(min(rgb, 1), 0);

rgb2hsi()函数:

function hsi = rgb2hsi(rgb)
%RGB2HSI Converts an RGB image to HSI.
% HSI = RGB2HSI(RGB) converts an RGB image to HSI. The input image
% is assumed to be of size M-by-N-by-3, where the third dimension
% accounts for three image planes: red, green, and blue, in that
% order. If all RGB component images are equal, the HSI conversion
% is undefined. The input image can be of class double (with values
% in the range [0, 1]), uint8, or uint16.
%
% The output image, HSI, is of class double, where:
% hsi(:, :, 1) = hue image normalized to the range [0, 1] by
% dividing all angle values by 2*pi.
% hsi(:, :, 2) = saturation image, in the range [0, 1].
% hsi(:, :, 3) = intensity image, in the range [0, 1]. % Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
% Digital Image Processing Using MATLAB, Prentice-Hall, 2004
% $Revision: 1.5 $ $Date: 2005/01/18 13:44:59 $ % Extract the individual component images.
rgb = im2double(rgb);
r = rgb(:, :, 1);
g = rgb(:, :, 2);
b = rgb(:, :, 3); % Implement the conversion equations.
num = 0.5*((r - g) + (r - b));
den = sqrt((r - g).^2 + (r - b).*(g - b));
theta = acos(num./(den + eps)); H = theta;
H(b > g) = 2*pi - H(b > g);
H = H/(2*pi); num = min(min(r, g), b);
den = r + g + b;
den(den == 0) = eps;
S = 1 - 3.* num./den; H(S == 0) = 0; I = (r + g + b)/3; % Combine all three results into an hsi image.
hsi = cat(3, H, S, I);

程序运行结果:

数字图像处理实验(16):PROJECT 06-03,Color Image Enhancement by Histogram Processing 标签: 图像处理MATLAB 2017的更多相关文章

  1. 数字图像处理实验(总计23个)汇总 标签: 图像处理MATLAB 2017-05-31 10:30 175人阅读 评论(0)

    以下这些实验中的代码全部是我自己编写调试通过的,到此,最后进行一下汇总. 数字图像处理实验(1):PROJECT 02-01, Image Printing Program Based on Half ...

  2. Win8Metro(C#)数字图像处理--2.16图像浮雕效果

    原文:Win8Metro(C#)数字图像处理--2.16图像浮雕效果  [函数名称] 图像浮雕效果函数ReliefProcess(WriteableBitmap src) [函数代码]       ...

  3. 数字图像处理实验(5):Proj03-01 ~ Proj03-06 标签: 图像处理matlab 2017-04-30 10:39 184人阅读

    PROJECT 03-01 : Image Enhancement Using Intensity Transformations 实验要求: Objective To manipulate a te ...

  4. android 1.6 launcher研究之自定义ViewGroup (转 2011.06.03(二)——— android 1.6 launcher研究之自定义ViewGroup )

    2011.06.03(2)——— android 1.6 launcher研究之自定义ViewGroup2011.06.03(2)——— android 1.6 launcher研究之自定义ViewG ...

  5. 数字图像处理实验(17):PROJECT 06-04,Color Image Segmentation 标签: 图像处理MATLAB 2017-05-27 21:13

    实验报告: Objective: Color image segmentation is a big issue in image processing. This students need to ...

  6. 数字图像处理实验(14):PROJECT 06-01,Web-Safe Colors 标签: 图像处理MATLAB 2017-05-27 20:45 116人阅读

    实验要求: Objective: To know what are Web-safe colors, how to generate the RGB components for a given jp ...

  7. 数字图像处理实验(10):PROJECT 05-01 [Multiple Uses],Noise Generators 标签: 图像处理MATLAB 2017-05-26 23:36

    实验要求: Objective: To know how to generate noise images with different probability density functions ( ...

  8. 数字图像处理实验(15):PROJECT 06-02,Pseudo-Color Image Processing 标签: 图像处理MATLAB 2017-05-27 20:53

    实验要求: 上面的实验要求中Objective(实验目的)部分是错误的. 然而在我拿到的大纲中就是这么写的,所以请忽视那部分,其余部分是没有问题的. 本实验是使用伪彩色强调突出我们感兴趣的灰度范围,在 ...

  9. 数字图像处理实验(12):PROJECT 05-03,Periodic Noise Reduction Using a Notch Filter 标签: 图像处理MATLAB 2017-0

    实验要求: Objective: To understand the principle of the notch filter and its periodic noise reducing abi ...

随机推荐

  1. Collections排序

    0.前言 ThreeSet的底层实现是红黑树,它在创建set的过程中实现排序.Collections.sort是在对整个集合进行排序,按道理来说使用TreeSet插入集合元素直至建立整个TreeSet ...

  2. ASM概述

    ASM的全称是 Automatic Storage Management,ASM 是为存放oracle 数据文件而设计的一个volume manager 和 文件系统 管理的技术. ASM 支持ora ...

  3. 集群/分布式环境下,Session处理策略

    前言 在搭建完集群环境后,不得不考虑的一个问题就是用户访问产生的session如何处理.如果不做任何处理的话,用户将出现频繁登录的现象.比如集中中存在A.B两台服务器,用户在第一次访问网站是,Ngin ...

  4. redis和phpredis扩展的安装

    redis的安装https://code.google.com/p/redis/downloads/list下载redisredis-2.6.13.tar.gztar -xvzf redis-2.6. ...

  5. 转:oracle几组重要的常见视图-v$process,v$session,v$session_wait,v$session_event

    v$process 本视图包含当前系统oracle运行的所有进程信息.常被用于将oracle或服务进程的操作系统进程ID与数据库session之间建立联系.在某些情况下非常有用: 1 如果数据库瓶颈是 ...

  6. MySQL 5.6/5.7 linux常见安装(tar,yum,script)

    该文章总结一下MySQL的常见安装方式,以tar,yum,script 三种方式来演示: 一般的公司都会有自己统一的数据库安装规范和模板,在生产环境请按照自己的规范来安装和使用,这里只演示和测试,供需 ...

  7. 聚类 高维聚类 聚类评估标准 EM模型聚类

    高维数据的聚类分析 高维聚类研究方向 高维数据聚类的难点在于: 1.适用于普通集合的聚类算法,在高维数据集合中效率极低 2.由于高维空间的稀疏性以及最近邻特性,高维的空间中基本不存在数据簇. 在高维聚 ...

  8. 如何将serialport接收的字符串转换成十六进制数c#

    关注 baihe_591 baihe_591 本版等级:   #1 得分:0回复于: 2008-06-02 09:44:00 Byte[] byte=new Byte[1];byte=0xf1;por ...

  9. wordpress 基础文件

    需要用到的PHP基础文件有: 404.php 404模板  rtl.css  如果网站的阅读方向是自右向左的,会被自动包含进来 comments.php  评论模板 single.php 文章模板.显 ...

  10. Hadoop IO 特性详解(2)

    (本文引用了microheart,ggjucheng的一些资料,在此感谢.charles觉得知识无价,开源共享无价) 这一次我们接着分析文件IO校验的相关代码,看看最底层是如何实现这种大数据集的文件校 ...