数字图像处理实验(16):PROJECT 06-03,Color Image Enhancement by Histogram Processing 标签: 图像处理MATLAB 2017
实验要求:
Objective:
To know how to implement image enhancement for color images by histogram processing. Note that the definition of histogram for color images differs from that of histogram for gray images.
Main requirements:
Ability of programming with C, C++, or Matlab.
Instruction manual:
(a) Download the dark-stream color picture in Fig. 6.35 (this image is labeled Fig. 6.35(05) in the image gallery for Chapter 6). Convert the image to RGB (see comments at the beginning of Project 06-01). Histogram-equalize the R, G, and B images separately using the histogram-equalization program and convert the image back to jpg format.
(b) Form an average histogram from the three histograms in (a) and use it as the basis to obtain a single histogram equalization intensity transformation function. Apply this function to the R, G, and B components individually, and convert the results to jpg. Compare and explain the differences in the jpg images in (a) and (b).
本实验是对彩色图像进行直方图均衡化处理。其中,我分了两种方式对彩色图像进行处理。一种是对图像的R、G、B三个彩色分量进行直方图均衡化,另一种是将图像从RGB颜色空间转换到HSI颜色空间,使用直方图均衡化单独处理亮度I分量,随后将图像从HSI空间转换回到RGB颜色空间。对比两种处理方法的结果。
实验代码:
%%
close all;
clc;
clear all;
%%
img = imread('Fig6.35(5).jpg');
figure
subplot(1,3,1);
imshow(img);
title('original image');
%% 对RGB3个通道的灰度值分别做直方图均衡化,然后再合为一幅新的图像
R = img(:, :, 1);
G = img(:, :, 2);
B = img(:, :, 3);
A = histeq(R);
B = histeq(G);
C = histeq(B);
img1 = cat(3, A, B, C);
subplot(1,3,2);
imshow(img1);
title('histogram-equalization 1');
%% 先将RGB格式的图像转换为HSI格式的图像,然后再对亮度I做直方图均衡化,紧接着转换成RGB格式的图像
img_hsi = rgb2hsi(img);
img_hsi_i = img_hsi(:, :, 3);
img_hsi_I = histeq(img_hsi_i);
img_hsi(:, :, 3) = img_hsi_I;
img2 = hsi2rgb(img_hsi);
subplot(1,3,3);
imshow(img2);
title('histogram-equalization 2');
补充:
程序中使用的一些函数,RGB和HSI颜色空间之间相互转换的程序:
hsi2rgb()函数:
function rgb = hsi2rgb(hsi)
%HSI2RGB Converts an HSI image to RGB.
% RGB = HSI2RGB(HSI) converts an HSI image to RGB, where HSI is
% assumed to be of class double with:
% hsi(:, :, 1) = hue image, assumed to be in the range
% [0, 1] by having been divided by 2*pi.
% hsi(:, :, 2) = saturation image, in the range [0, 1].
% hsi(:, :, 3) = intensity image, in the range [0, 1].
%
% The components of the output image are:
% rgb(:, :, 1) = red.
% rgb(:, :, 2) = green.
% rgb(:, :, 3) = blue.
% Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
% Digital Image Processing Using MATLAB, Prentice-Hall, 2004
% $Revision: 1.5 $ $Date: 2003/10/13 01:01:06 $
% Extract the individual HSI component images.
H = hsi(:, :, 1) * 2 * pi;
S = hsi(:, :, 2);
I = hsi(:, :, 3);
% Implement the conversion equations.
R = zeros(size(hsi, 1), size(hsi, 2));
G = zeros(size(hsi, 1), size(hsi, 2));
B = zeros(size(hsi, 1), size(hsi, 2));
% RG sector (0 <= H < 2*pi/3).
idx = find( (0 <= H) & (H < 2*pi/3));
B(idx) = I(idx) .* (1 - S(idx));
R(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx)) ./ ...
cos(pi/3 - H(idx)));
G(idx) = 3*I(idx) - (R(idx) + B(idx));
% BG sector (2*pi/3 <= H < 4*pi/3).
idx = find( (2*pi/3 <= H) & (H < 4*pi/3) );
R(idx) = I(idx) .* (1 - S(idx));
G(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 2*pi/3) ./ ...
cos(pi - H(idx)));
B(idx) = 3*I(idx) - (R(idx) + G(idx));
% BR sector.
idx = find( (4*pi/3 <= H) & (H <= 2*pi));
G(idx) = I(idx) .* (1 - S(idx));
B(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 4*pi/3) ./ ...
cos(5*pi/3 - H(idx)));
R(idx) = 3*I(idx) - (G(idx) + B(idx));
% Combine all three results into an RGB image. Clip to [0, 1] to
% compensate for floating-point arithmetic rounding effects.
rgb = cat(3, R, G, B);
rgb = max(min(rgb, 1), 0);
rgb2hsi()函数:
function hsi = rgb2hsi(rgb)
%RGB2HSI Converts an RGB image to HSI.
% HSI = RGB2HSI(RGB) converts an RGB image to HSI. The input image
% is assumed to be of size M-by-N-by-3, where the third dimension
% accounts for three image planes: red, green, and blue, in that
% order. If all RGB component images are equal, the HSI conversion
% is undefined. The input image can be of class double (with values
% in the range [0, 1]), uint8, or uint16.
%
% The output image, HSI, is of class double, where:
% hsi(:, :, 1) = hue image normalized to the range [0, 1] by
% dividing all angle values by 2*pi.
% hsi(:, :, 2) = saturation image, in the range [0, 1].
% hsi(:, :, 3) = intensity image, in the range [0, 1].
% Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
% Digital Image Processing Using MATLAB, Prentice-Hall, 2004
% $Revision: 1.5 $ $Date: 2005/01/18 13:44:59 $
% Extract the individual component images.
rgb = im2double(rgb);
r = rgb(:, :, 1);
g = rgb(:, :, 2);
b = rgb(:, :, 3);
% Implement the conversion equations.
num = 0.5*((r - g) + (r - b));
den = sqrt((r - g).^2 + (r - b).*(g - b));
theta = acos(num./(den + eps));
H = theta;
H(b > g) = 2*pi - H(b > g);
H = H/(2*pi);
num = min(min(r, g), b);
den = r + g + b;
den(den == 0) = eps;
S = 1 - 3.* num./den;
H(S == 0) = 0;
I = (r + g + b)/3;
% Combine all three results into an hsi image.
hsi = cat(3, H, S, I);
程序运行结果:
数字图像处理实验(16):PROJECT 06-03,Color Image Enhancement by Histogram Processing 标签: 图像处理MATLAB 2017的更多相关文章
- 数字图像处理实验(总计23个)汇总 标签: 图像处理MATLAB 2017-05-31 10:30 175人阅读 评论(0)
以下这些实验中的代码全部是我自己编写调试通过的,到此,最后进行一下汇总. 数字图像处理实验(1):PROJECT 02-01, Image Printing Program Based on Half ...
- Win8Metro(C#)数字图像处理--2.16图像浮雕效果
原文:Win8Metro(C#)数字图像处理--2.16图像浮雕效果 [函数名称] 图像浮雕效果函数ReliefProcess(WriteableBitmap src) [函数代码] ...
- 数字图像处理实验(5):Proj03-01 ~ Proj03-06 标签: 图像处理matlab 2017-04-30 10:39 184人阅读
PROJECT 03-01 : Image Enhancement Using Intensity Transformations 实验要求: Objective To manipulate a te ...
- android 1.6 launcher研究之自定义ViewGroup (转 2011.06.03(二)——— android 1.6 launcher研究之自定义ViewGroup )
2011.06.03(2)——— android 1.6 launcher研究之自定义ViewGroup2011.06.03(2)——— android 1.6 launcher研究之自定义ViewG ...
- 数字图像处理实验(17):PROJECT 06-04,Color Image Segmentation 标签: 图像处理MATLAB 2017-05-27 21:13
实验报告: Objective: Color image segmentation is a big issue in image processing. This students need to ...
- 数字图像处理实验(14):PROJECT 06-01,Web-Safe Colors 标签: 图像处理MATLAB 2017-05-27 20:45 116人阅读
实验要求: Objective: To know what are Web-safe colors, how to generate the RGB components for a given jp ...
- 数字图像处理实验(10):PROJECT 05-01 [Multiple Uses],Noise Generators 标签: 图像处理MATLAB 2017-05-26 23:36
实验要求: Objective: To know how to generate noise images with different probability density functions ( ...
- 数字图像处理实验(15):PROJECT 06-02,Pseudo-Color Image Processing 标签: 图像处理MATLAB 2017-05-27 20:53
实验要求: 上面的实验要求中Objective(实验目的)部分是错误的. 然而在我拿到的大纲中就是这么写的,所以请忽视那部分,其余部分是没有问题的. 本实验是使用伪彩色强调突出我们感兴趣的灰度范围,在 ...
- 数字图像处理实验(12):PROJECT 05-03,Periodic Noise Reduction Using a Notch Filter 标签: 图像处理MATLAB 2017-0
实验要求: Objective: To understand the principle of the notch filter and its periodic noise reducing abi ...
随机推荐
- IOS socket编程--Asyncsocket
iPhone的标准推荐是CFNetwork 库编程,其封装好的开源库是 cocoa AsyncSocket库,用它来简化CFNetwork的调用,它提供了异步操作 主要特性有: 队列的非阻塞的读和写, ...
- 【JVM】JVM参数说明和分析
不管是YGC还是Full GC,GC过程中都会对导致程序运行中中断,正确的选择不同的GC策略, 调整JVM.GC的参数,可以极大的减少由于GC工作,而导致的程序运行中断方面的问题,进而适当的提高Jav ...
- (转)android - anim translate中 fromXDelta、toXDelta、fromYDelta、toXDelta属性
2012-03-23 15:51 16144人阅读 评论(5) 收藏 举报 android <set xmlns:android="http://schemas.android.com ...
- spring mvc从@ResponseBody取到json发现中文乱码
问题背景:如题. 问题定位:代码跟踪,从源头入手,一步一步跟进,直到设置中文编码的地方. 问题代码: /** * 获取单个测试桩接口内容 * * @author wulinfeng * @param ...
- Spring读取properties资源文件
我们知道可以通过读取资源文件流后加载到Properties对象,再使用该对象方法来获取资源文件.现在介绍下利用Spring内置对象来读取资源文件. 系统启动时加载资源文件链路:web.xml --&g ...
- Jave 文件介绍
Java程序的基本组成单元是类,有class声明,类体中包括属性和方法. 一个Java文件中可以有多个class声明,但由public修饰的类只能有一个,并且类名作为该文件的名称. 每一个应用程序都必 ...
- php redis 命令合集
1.https://www.cnblogs.com/aipiaoborensheng/p/5666005.html 2.https://www.cnblogs.com/doanddo/p/734908 ...
- redis1
1. redis持久化有两种方式 ① RDB:就是周期性(比如5s)将内存中的数据放到硬盘 ② AOF:就是增删改操作写入日志,根据日志恢复等 2. redis三种分布式 ①主从 ②哨兵 ③集群 3. ...
- 【转】 Pro Android学习笔记(九三):AsyncTask(2):小例子
目录(?)[-] 继承AsyncTask UI操作接口 使用AsyncTask 文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件.转载须注明出处:http://blog.csdn. ...
- 【转】Jmeter:图形界面压力测试工具
Jmeter是一款强大的图形界面压力测试工具,完全用Java写成,关于Jmeter的介绍,网上其实有不少的文章,我原本是不想再重复写类似文章的,但我发现有些很关键性的,在我们测试中一定会用到的一些设置 ...