数字图像处理实验(16):PROJECT 06-03,Color Image Enhancement by Histogram Processing 标签: 图像处理MATLAB 2017
实验要求:
Objective:
To know how to implement image enhancement for color images by histogram processing. Note that the definition of histogram for color images differs from that of histogram for gray images.
Main requirements:
Ability of programming with C, C++, or Matlab.
Instruction manual:
(a) Download the dark-stream color picture in Fig. 6.35 (this image is labeled Fig. 6.35(05) in the image gallery for Chapter 6). Convert the image to RGB (see comments at the beginning of Project 06-01). Histogram-equalize the R, G, and B images separately using the histogram-equalization program and convert the image back to jpg format.
(b) Form an average histogram from the three histograms in (a) and use it as the basis to obtain a single histogram equalization intensity transformation function. Apply this function to the R, G, and B components individually, and convert the results to jpg. Compare and explain the differences in the jpg images in (a) and (b).
本实验是对彩色图像进行直方图均衡化处理。其中,我分了两种方式对彩色图像进行处理。一种是对图像的R、G、B三个彩色分量进行直方图均衡化,另一种是将图像从RGB颜色空间转换到HSI颜色空间,使用直方图均衡化单独处理亮度I分量,随后将图像从HSI空间转换回到RGB颜色空间。对比两种处理方法的结果。
实验代码:
%%
close all;
clc;
clear all;
%%
img = imread('Fig6.35(5).jpg');
figure
subplot(1,3,1);
imshow(img);
title('original image');
%% 对RGB3个通道的灰度值分别做直方图均衡化,然后再合为一幅新的图像
R = img(:, :, 1);
G = img(:, :, 2);
B = img(:, :, 3);
A = histeq(R);
B = histeq(G);
C = histeq(B);
img1 = cat(3, A, B, C);
subplot(1,3,2);
imshow(img1);
title('histogram-equalization 1');
%% 先将RGB格式的图像转换为HSI格式的图像,然后再对亮度I做直方图均衡化,紧接着转换成RGB格式的图像
img_hsi = rgb2hsi(img);
img_hsi_i = img_hsi(:, :, 3);
img_hsi_I = histeq(img_hsi_i);
img_hsi(:, :, 3) = img_hsi_I;
img2 = hsi2rgb(img_hsi);
subplot(1,3,3);
imshow(img2);
title('histogram-equalization 2');
补充:
程序中使用的一些函数,RGB和HSI颜色空间之间相互转换的程序:
hsi2rgb()函数:
function rgb = hsi2rgb(hsi)
%HSI2RGB Converts an HSI image to RGB.
% RGB = HSI2RGB(HSI) converts an HSI image to RGB, where HSI is
% assumed to be of class double with:
% hsi(:, :, 1) = hue image, assumed to be in the range
% [0, 1] by having been divided by 2*pi.
% hsi(:, :, 2) = saturation image, in the range [0, 1].
% hsi(:, :, 3) = intensity image, in the range [0, 1].
%
% The components of the output image are:
% rgb(:, :, 1) = red.
% rgb(:, :, 2) = green.
% rgb(:, :, 3) = blue.
% Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
% Digital Image Processing Using MATLAB, Prentice-Hall, 2004
% $Revision: 1.5 $ $Date: 2003/10/13 01:01:06 $
% Extract the individual HSI component images.
H = hsi(:, :, 1) * 2 * pi;
S = hsi(:, :, 2);
I = hsi(:, :, 3);
% Implement the conversion equations.
R = zeros(size(hsi, 1), size(hsi, 2));
G = zeros(size(hsi, 1), size(hsi, 2));
B = zeros(size(hsi, 1), size(hsi, 2));
% RG sector (0 <= H < 2*pi/3).
idx = find( (0 <= H) & (H < 2*pi/3));
B(idx) = I(idx) .* (1 - S(idx));
R(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx)) ./ ...
cos(pi/3 - H(idx)));
G(idx) = 3*I(idx) - (R(idx) + B(idx));
% BG sector (2*pi/3 <= H < 4*pi/3).
idx = find( (2*pi/3 <= H) & (H < 4*pi/3) );
R(idx) = I(idx) .* (1 - S(idx));
G(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 2*pi/3) ./ ...
cos(pi - H(idx)));
B(idx) = 3*I(idx) - (R(idx) + G(idx));
% BR sector.
idx = find( (4*pi/3 <= H) & (H <= 2*pi));
G(idx) = I(idx) .* (1 - S(idx));
B(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 4*pi/3) ./ ...
cos(5*pi/3 - H(idx)));
R(idx) = 3*I(idx) - (G(idx) + B(idx));
% Combine all three results into an RGB image. Clip to [0, 1] to
% compensate for floating-point arithmetic rounding effects.
rgb = cat(3, R, G, B);
rgb = max(min(rgb, 1), 0);
rgb2hsi()函数:
function hsi = rgb2hsi(rgb)
%RGB2HSI Converts an RGB image to HSI.
% HSI = RGB2HSI(RGB) converts an RGB image to HSI. The input image
% is assumed to be of size M-by-N-by-3, where the third dimension
% accounts for three image planes: red, green, and blue, in that
% order. If all RGB component images are equal, the HSI conversion
% is undefined. The input image can be of class double (with values
% in the range [0, 1]), uint8, or uint16.
%
% The output image, HSI, is of class double, where:
% hsi(:, :, 1) = hue image normalized to the range [0, 1] by
% dividing all angle values by 2*pi.
% hsi(:, :, 2) = saturation image, in the range [0, 1].
% hsi(:, :, 3) = intensity image, in the range [0, 1].
% Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
% Digital Image Processing Using MATLAB, Prentice-Hall, 2004
% $Revision: 1.5 $ $Date: 2005/01/18 13:44:59 $
% Extract the individual component images.
rgb = im2double(rgb);
r = rgb(:, :, 1);
g = rgb(:, :, 2);
b = rgb(:, :, 3);
% Implement the conversion equations.
num = 0.5*((r - g) + (r - b));
den = sqrt((r - g).^2 + (r - b).*(g - b));
theta = acos(num./(den + eps));
H = theta;
H(b > g) = 2*pi - H(b > g);
H = H/(2*pi);
num = min(min(r, g), b);
den = r + g + b;
den(den == 0) = eps;
S = 1 - 3.* num./den;
H(S == 0) = 0;
I = (r + g + b)/3;
% Combine all three results into an hsi image.
hsi = cat(3, H, S, I);
程序运行结果:
数字图像处理实验(16):PROJECT 06-03,Color Image Enhancement by Histogram Processing 标签: 图像处理MATLAB 2017的更多相关文章
- 数字图像处理实验(总计23个)汇总 标签: 图像处理MATLAB 2017-05-31 10:30 175人阅读 评论(0)
以下这些实验中的代码全部是我自己编写调试通过的,到此,最后进行一下汇总. 数字图像处理实验(1):PROJECT 02-01, Image Printing Program Based on Half ...
- Win8Metro(C#)数字图像处理--2.16图像浮雕效果
原文:Win8Metro(C#)数字图像处理--2.16图像浮雕效果 [函数名称] 图像浮雕效果函数ReliefProcess(WriteableBitmap src) [函数代码] ...
- 数字图像处理实验(5):Proj03-01 ~ Proj03-06 标签: 图像处理matlab 2017-04-30 10:39 184人阅读
PROJECT 03-01 : Image Enhancement Using Intensity Transformations 实验要求: Objective To manipulate a te ...
- android 1.6 launcher研究之自定义ViewGroup (转 2011.06.03(二)——— android 1.6 launcher研究之自定义ViewGroup )
2011.06.03(2)——— android 1.6 launcher研究之自定义ViewGroup2011.06.03(2)——— android 1.6 launcher研究之自定义ViewG ...
- 数字图像处理实验(17):PROJECT 06-04,Color Image Segmentation 标签: 图像处理MATLAB 2017-05-27 21:13
实验报告: Objective: Color image segmentation is a big issue in image processing. This students need to ...
- 数字图像处理实验(14):PROJECT 06-01,Web-Safe Colors 标签: 图像处理MATLAB 2017-05-27 20:45 116人阅读
实验要求: Objective: To know what are Web-safe colors, how to generate the RGB components for a given jp ...
- 数字图像处理实验(10):PROJECT 05-01 [Multiple Uses],Noise Generators 标签: 图像处理MATLAB 2017-05-26 23:36
实验要求: Objective: To know how to generate noise images with different probability density functions ( ...
- 数字图像处理实验(15):PROJECT 06-02,Pseudo-Color Image Processing 标签: 图像处理MATLAB 2017-05-27 20:53
实验要求: 上面的实验要求中Objective(实验目的)部分是错误的. 然而在我拿到的大纲中就是这么写的,所以请忽视那部分,其余部分是没有问题的. 本实验是使用伪彩色强调突出我们感兴趣的灰度范围,在 ...
- 数字图像处理实验(12):PROJECT 05-03,Periodic Noise Reduction Using a Notch Filter 标签: 图像处理MATLAB 2017-0
实验要求: Objective: To understand the principle of the notch filter and its periodic noise reducing abi ...
随机推荐
- WPF XMAL获取元素的父元素,子元素
/// 获得指定元素的父元素 /// </summary> /// <typeparam name="T">指定页面元素</typeparam> ...
- Hibernate HQL查询(2)
hql是面向对象查询,格式:from + 类名 + 类对象 + where + 对象的属性 sql是面向数据库表查询,格式:from + 表名 + where + 表中字段 1.查询 一般在Hiber ...
- jQuery使用prop设置checkbox全选、反选
$(function(){ var checkbox = $("input[type='checkbox']"); //全选 $('#select-all' ...
- 剑指offer-第五章优化时间和空间效率(数组中出现次数超过一半的数字)
题目:输入一个数组,找出一个数字,它在数组中出现的次数超过数组的一半. 题目规定如果可以改变数组中元素的位置. 思路1:如果数组是排序的,那么中间元素的位置不就是次数超过数组一半的元素吗?是的,因此我 ...
- SPOJLCS Longest Common Substring
题意 A string is finite sequence of characters over a non-empty finite set Σ. In this problem, Σ is th ...
- push()、shift()与pop()、unshift()、splice()
1.末端的添加和移除:push()是用来在数组末端添加项,pop()在数组末端移除项: 2.前端的添加和移除:shift()在移除数组的第一个项(前端),unshift()在数组前端添加项: 3.pu ...
- oracle系统表的查询
oracle查询用户下的所有表 select * from all_tab_comments -- 查询所有用户的表,视图等select * from user_tab_comments -- 查 ...
- Windows下通过Composer安装Yii2 [ 2.0 版本 ]
安装好大于5.4或更高版本的PHP环境并开启openssl扩展.如果是Apache服务器,加载Apache的mod_ssl模块. 下载Composer并安装. 开始->运行[或者WIN+R]-& ...
- (转)Android 中LocalBroadcastManager的使用方式
发表于2个月前(2014-11-03 22:05) 阅读(37) | 评论(0) 0人收藏此文章, 我要收藏 赞0 1月10日 #长沙# OSC 源创会第32期开始报名 摘要 android中广播 ...
- junit基础学习
学习地址一:http://blog.csdn.net/andycpp/article/details/1327147/ 学习地址二:http://blog.csdn.net/zen99t/articl ...