A. Diagonal Walking

题意

将一个序列中所有的\('RU'\)或者\('UR'\)替换成\('D'\),问最终得到的序列最短长度为多少。

思路

贪心

Code

#include <bits/stdc++.h>
#define F(i, a, b) for (int i = (a); i < (b); ++i)
#define F2(i, a, b) for (int i = (a); i <= (b); ++i)
#define dF(i, a, b) for (int i = (a); i > (b); --i)
#define dF2(i, a, b) for (int i = (a); i >= (b); --i)
#define maxn 110
using namespace std;
char s[maxn];
typedef long long LL;
int main() {
int n, cnt=0;
scanf("%d%s", &n, s);
bool used=0;
F(i, 1, n) {
if (!used && ((s[i]=='U'&&s[i-1]=='R') || (s[i]=='R'&&s[i-1]=='U'))) {
++cnt, used = true;
}
else used = false;
}
printf("%d\n", n-cnt);
return 0;
}

B. String Typing

题意

要得到一个字符串,有两种操作:

  1. 打印一个字符
  2. 将前面打印过的部分拷贝一遍跟在后面;

    第二种方法最多只能使用一次

问要打印一个字符串最少的操作次数。

思路

数据量暴力可过,但是还是拿来回忆了下后缀数组。

题目即是要求最长的\(A\),使得原字符串\(S\)可表示为\(AAB\)的形式。

通过后缀数组的\(height\)数组,可以知道原串与每一个后缀的\(LCP\)长度,要能够拷贝,满足的条件是:

  1. 该后缀与原串的\(LCP\)长度\(\geq\)两者之间的起始位置差
  2. 该后缀与原串间的起始位置差\(*2\leq\)原串的长度

在所有满足条件的当中取个最大值即可。

Code

#include <bits/stdc++.h>
#define F(i, a, b) for (int i = (a); i < (b); ++i)
#define F2(i, a, b) for (int i = (a); i <= (b); ++i)
#define dF(i, a, b) for (int i = (a); i > (b); --i)
#define dF2(i, a, b) for (int i = (a); i >= (b); --i)
#define maxn 1010
using namespace std;
int wa[maxn], wb[maxn], wv[maxn], wt[maxn], h[maxn], rk[maxn], sa[maxn], n, m, tot, r[maxn];
char s[maxn];
bool cmp(int* r, int a, int b, int l) { return r[a] == r[b] && r[a+l] == r[b+l]; }
void init(int* r, int* sa, int n, int m) {
int* x=wa, *y=wb, *t, i, j, p;
for (i = 0; i < m; ++i) wt[i] = 0;
for (i = 0; i < n; ++i) ++wt[x[i] = r[i]];
for (i = 1; i < m; ++i) wt[i] += wt[i - 1];
for (i = n-1; i >= 0; --i) sa[--wt[x[i]]] = i; for (j = 1, p = 1; p < n; j <<= 1, m = p) {
for (p = 0, i = n-j; i < n; ++i) y[p++] = i;
for (i = 0; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j; for (i = 0; i < n; ++i) wv[i] = x[y[i]]; for (i = 0; i < m; ++i) wt[i] = 0;
for (i = 0; i < n; ++i) ++wt[wv[i]];
for (i = 1; i < m; ++i) wt[i] += wt[i - 1];
for (i = n-1; i >= 0; --i) sa[--wt[wv[i]]] = y[i]; t = x, x = y, y = t, x[sa[0]] = 0;
for (p = 1, i = 1; i < n; ++i) x[sa[i]] = cmp(y, sa[i], sa[i-1], j) ? p - 1 : p++;
} for (i = 0; i < n; ++i) rk[sa[i]] = i;
int k = 0;
for (i = 0; i < n - 1; h[rk[i++]] = k) {
for (k = k ? --k : 0, j = sa[rk[i] - 1]; r[i+k] == r[j+k]; ++k);
}
}
int main() {
scanf("%d%s", &n, s);
F(i, 0, n) m = max(r[tot++]=s[i], m); r[tot++] = 0;
init(r, sa, tot, ++m);
int p = rk[0], maxx = 0;
dF2(i, p-1, 1) {
if (h[i+1]>=sa[i] && (sa[i]<<1)<=n) maxx = max(maxx, sa[i]);
h[i] = min(h[i], h[i+1]);
}
F(i, p+1, tot) {
if (h[i]>=sa[i] && (sa[i]<<1)<=n) maxx = max(maxx, sa[i]);
h[i+1] = min(h[i], h[i+1]);
}
printf("%d\n", maxx?n-maxx+1:n);
return 0;
}

C. Matrix Walk

题意

一个\(N\times M\)的方格纸,从左到右从上到下分别标号\(1,2,\ldots,N\times M\). 在每一个格子中只能向上下左右相邻的四个格子走。

现给出一个行走序列,要求给出一组合法的\(N,M\). 或者指出不存在。

思路

注意到,合法的序列差只可能为\(1\)或者定值\(M\).

在满足该条件的基础上,还要注意不能从最右边的格子\(+1\),不能从最左边的格子\(-1\).

注意一些细节即可。

Code

#include <bits/stdc++.h>
#define F(i, a, b) for (int i = (a); i < (b); ++i)
#define F2(i, a, b) for (int i = (a); i <= (b); ++i)
#define dF(i, a, b) for (int i = (a); i > (b); --i)
#define dF2(i, a, b) for (int i = (a); i >= (b); --i)
#define maxn 200010
using namespace std;
typedef long long LL;
int a[maxn];
int main() {
int n, y;
scanf("%d", &n);
F(i, 0, n) scanf("%d", &a[i]);
F(i, 1, n) {
y = abs(a[i]-a[i-1]);
if (y==0) { puts("NO"); return 0; }
if (y>1) break;
}
if (y==1) { puts("YES"); printf("%d %d\n", 1, 1000000000); }
else {
F(i, 1, n) {
if (a[i]-a[i-1]==1) {
if (a[i-1]%y==0) { puts("NO"); return 0; }
}
else if (a[i]-a[i-1]==-1) {
if (a[i]%y==0) { puts("NO"); return 0; }
}
else if (abs(a[i]-a[i-1])!=y) { puts("NO"); return 0; }
}
puts("YES");
printf("%d %d\n", 1000000000, y);
}
return 0;
}

D. Fight Against Traffic

题意

给定一张图和起点\(s\)终点\(t\),现在原图不相邻的两点之间加一条边,问有多少种加边方式会不导致\(s\)到\(t\)之间的距离缩短。

思路

若加边导致距离缩短,则必经过刚加的边,假设加的边为\((u,v)\),原\(s,t\)的距离为\(d\),图中所有顶点到\(s\)的最短路距离为\(dist1[]\),到\(t\)的最短路距离为\(dist2[]\)则必有$$dist1[u]+1+dist2[v]\lt d$$或者

\[dist1[v]+1+dist2[u]\lt d
\]

枚举边根据上述条件\(check\)即可。

Code

#include <bits/stdc++.h>
#define F(i, a, b) for (int i = (a); i < (b); ++i)
#define F2(i, a, b) for (int i = (a); i <= (b); ++i)
#define dF(i, a, b) for (int i = (a); i > (b); --i)
#define dF2(i, a, b) for (int i = (a); i >= (b); --i)
#define maxn 1010
struct Edge { int to, ne; }edge[maxn<<1];
int tot, ne[maxn], dist1[maxn], dist2[maxn];
bool vis[maxn], mp[maxn][maxn];
void add(int u, int v) {
edge[tot] = {v, ne[u]};
ne[u] = tot++;
}
struct node {
int v, c;
bool operator < (const node& nd) const { return c > nd.c; }
};
using namespace std;
typedef long long LL;
void dij(int src, int* dist) {
memset(vis, 0, sizeof vis);
memset(dist, 0x3f, maxn*sizeof(int));
vis[src] = true; dist[src] = 0;
priority_queue<node> q;
while (true) {
for (int i = ne[src]; ~i; i = edge[i].ne) {
int v = edge[i].to;
if (vis[v]) continue;
if (dist[src]+1<dist[v]) {
dist[v] = dist[src]+1;
q.push({v, dist[v]});
}
}
while (!q.empty() && vis[q.top().v]) q.pop();
if (q.empty()) break;
vis[src=q.top().v] = true;
}
}
int main() {
memset(ne, -1, sizeof ne);
int n, m, s, t, u, v;
scanf("%d%d%d%d", &n, &m, &s, &t);
F(i, 0, m) {
scanf("%d%d", &u, &v);
add(u, v), add(v, u);
mp[u][v] = mp[v][u] = true;
}
dij(s, dist1);
dij(t, dist2);
int cur = dist1[t], ans = 0;
F2(i, 1, n) {
F2(j, i+1, n) {
if (mp[i][j]) continue;
if (dist1[i]+1+dist2[j]>=cur && dist2[i]+1+dist1[j]>=cur) ++ans;
}
}
printf("%d\n", ans);
return 0;
}

E. Water Taps

题意

\(n\)个水龙头,流量分别为\(a_1,a_2,\ldots,a_n\),温度分别为\(t_1,t_2,\ldots,t_n\),打开若干个水龙头放水,假设放出的水量分别为\(x_1,x_2,\ldots,x_n\),则得到的水温为

\[\frac{\sum_{i=1}^{n}x_it_i}{\sum_{i=1}^{n}x_i}
\]

现要得到温度为\(T\)的水,求能放出的水量的最大值。

思路

因为

\[\frac{\sum_{i=1}^{n}x_it_i}{\sum_{i=1}^{n}x_i}=T
\]

所以

\[\sum_{i=1}^{n}x_i(t_i-T)=0
\]

因此将所有的\(t_i\)减去\(T\)之后,每个水龙头对温度的贡献就分为正贡献和负贡献。

正的放在一边,负的放在一边,因为能取小数,所以少的一边必能取满。

而要多的那边能取到尽量多的\(x\),只要\(t\)尽量小,所以将\(t\)从小到大排序后取即可。

Code

#include <bits/stdc++.h>
#define F(i, a, b) for (int i = (a); i < (b); ++i)
#define F2(i, a, b) for (int i = (a); i <= (b); ++i)
#define dF(i, a, b) for (int i = (a); i > (b); --i)
#define dF2(i, a, b) for (int i = (a); i >= (b); --i)
#define maxn 200010
using namespace std;
typedef long long LL;
struct node {
LL x, t;
bool operator < (const node& nd) const { return t < nd.t; }
}a[maxn];
int main() {
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
int n, T;
scanf("%d%d", &n, &T);
F(i, 0, n) scanf("%I64d", &a[i].x);
F(i, 0, n) scanf("%I64d", &a[i].t), a[i].t-=T;
sort(a, a+n);
int p2=0, p1=-1;
double ans=0;
for (; p2<n; ++p2) {
if (a[p2].t<0) p1=p2;
else if (!a[p2].t) ans += a[p2].x;
if (a[p2].t > 0) break;
}
if (p1==-1||p2==n) printf("%.8f\n", ans);
else {
LL sum1=0, sum2=0;
dF2(i, p1, 0) sum1-=a[i].x*a[i].t;
F(i, p2, n) sum2+=a[i].x*a[i].t;
if (sum1>=sum2) {
F(i, p2, n) ans += a[i].x;
int i=p1;
for (; i >= 0; --i) {
if (sum2-a[i].x*(-a[i].t)<0) break;
ans += a[i].x;
sum2 += a[i].x*a[i].t;
}
if (i>=0&&sum2) ans += 1.0*sum2/(-a[i].t);
}
else {
dF2(i, p1, 0) ans += a[i].x;
int i=p2;
for (; i < n; ++i) {
if (sum1-a[i].x*a[i].t<0) break;
ans += a[i].x;
sum1 -= a[i].x*a[i].t;
}
if (i<n&&sum1) ans += 1.0*sum1/a[i].t;
}
printf("%.8f\n", ans);
}
return 0;
}

G. Castle Defense

题意

数轴上\(n\)个位置每个位置放有若干个弓箭手,弓箭手的攻击范围为左右大小为\(r\)的范围内。

一个点的防御程度定义为 该点能被多少个弓箭手攻击到。整条放线的防御程度定义为其上所有点防御程度的 最小值

现可以在防线上增添\(k\)个弓箭手,要求使防线的防御程度最大化,求这个最大值

思路

最小值的最大值,首先显然二分答案。

对于初始固定的弓箭手,一段一段的线段覆盖,可以用前缀和差分来处理。

之后二分答案时的\(check\)怎么进行呢?

用一个变量记录至今为止多放置了多少个弓箭手,从左到右扫

  1. 若位置\(i\)不够,则要在位置\(i+r+1\)补弓箭手
  2. 考虑到位置\(i\)时,要记得消除掉前面的\(i-r-1\)位置的影响

复杂度\(O(n\log n)\)

Code

#include <bits/stdc++.h>
#define F(i, a, b) for (int i = (a); i < (b); ++i)
#define F2(i, a, b) for (int i = (a); i <= (b); ++i)
#define dF(i, a, b) for (int i = (a); i > (b); --i)
#define dF2(i, a, b) for (int i = (a); i >= (b); --i)
#define maxn 500010
using namespace std;
typedef long long LL;
int n, d; LL k;
LL sum[maxn], a[maxn], add[maxn];
bool check(LL x) {
memset(add, 0, sizeof add);
LL temp=0, tot=0;
F2(i, 1, n) {
temp -= (i>=d+2 ? add[i-d-1] : 0);
if (x<=sum[i]+temp) continue;
int p = min(i+d, n);
add[p] = x - (sum[i] + temp);
tot += add[p];
if (tot>k) return false;
temp = x-sum[i];
}
return true;
}
int main() {
scanf("%d%d%I64d", &n, &d, &k);
F2(i, 1, n) {
scanf("%I64d", &a[i]);
int l=max(i-d, 1), r=min(n+1, i+d+1);
sum[l]+=a[i], sum[r]-=a[i];
}
F2(i, 1, n) sum[i] += sum[i-1];
LL l=0, r=2e18, ans;
while (l<=r) {
LL mid=l+r>>1;
if (check(mid)) ans=mid, l=mid+1;
else r=mid-1;
}
printf("%I64d\n", ans);
return 0;
}

Educational Codeforces Round 40 A B C D E G的更多相关文章

  1. Educational Codeforces Round 40 (Rated for Div. 2) 954G G. Castle Defense

    题 OvO http://codeforces.com/contest/954/problem/G 解 二分答案, 对于每个二分的答案值 ANS,判断这个答案是否可行. 记 s 数组为题目中描述的 a ...

  2. Educational Codeforces Round 40 F. Runner's Problem

    Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...

  3. Educational Codeforces Round 40千名记

    人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...

  4. Educational Codeforces Round 40 C. Matrix Walk( 思维)

    Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...

  5. Educational Codeforces Round 40 (Rated for Div. 2) Solution

    从这里开始 小结 题目列表 Problem A Diagonal Walking Problem B String Typing Problem C Matrix Walk Problem D Fig ...

  6. Educational Codeforces Round 40 I. Yet Another String Matching Problem

    http://codeforces.com/contest/954/problem/I 给你两个串s,p,求上一个串的长度为|p|的所有子串和p的差距是多少,两个串的差距就是每次把一个字符变成另一个字 ...

  7. Educational Codeforces Round 40 G. Castle Defense (二分+滑动数组+greedy)

    G. Castle Defense time limit per test 1.5 seconds memory limit per test 256 megabytes input standard ...

  8. Educational Codeforces Round 40 (Rated for Div. 2)

    A. Diagonal Walking time limit per test 1 second memory limit per test 256 megabytes input standard ...

  9. Educational Codeforces Round 58 A,B,C,D,E,G

    A. Minimum Integer 链接:http://codeforces.com/contest/1101/problem/A 代码: #include<bits/stdc++.h> ...

随机推荐

  1. 【IOI 2002/FJOI2019】任务安排(超级计算机)

    题目 \(N\) 个任务排成一个序列在一台机器上等待完成(顺序不得改变),这 \(N\) 个任务被分成若干批,每批包含相邻的若干任务.从时刻 \(0\) 开始,这些任务被分批加工,第 \(i\) 个任 ...

  2. 2015年开源前端框架盘点TOP20

    2015年,榜单根据github上star数作为排名依据.(榜单中大部分为组件式框架, react.Angular等基础框架不在此篇讨论) 1.Bootstrap 类别/语言:HTML.CSS.Jav ...

  3. ASP NET Core ---POST, PUT, PATCH, DELETE,Model 验证

    参照 草根专栏- ASP.NET Core + Ng6 实战:https://v.qq.com/x/page/u0765jbwc6f.html 一.POST 安全性和幂等性 安全性是指方法执行后并不会 ...

  4. python学习总结----异常处理

    相关概念 - 错误:程序运行之前的语法错误,如:关键字.缩进不齐.括号不成对. - 异常:在程序运行过程中出现的问题,如:除数为0.对象属性不存在等. 异常处理 - 说明:异常处理可以理解为特殊的流程 ...

  5. C# 删除文件错误 access denied

    使用以下代码正常删除整个文件夹内容时,报错如下: if (backupPathDir.Exists) { System.IO.DirectoryInfo di = new DirectoryInfo( ...

  6. 【iOS开发】iOS对UIViewController生命周期和属性方法的解析

    iOS对UIViewController生命周期和属性方法的解析 一.引言 作为MVC设计模式中的C,Controller一直扮演着项目开发中最重要的角色,它是视图和数据的桥梁,通过它的管理,将数据有 ...

  7. 【翻译】ASP.NET Core 文档目录

    微软官方CORE 2.0正式版中文文档已经出来了,地址:https://docs.microsoft.com/zh-cn/aspnet/core/ 简介 入门 创建一个Web应用程序 创建一个Web ...

  8. Web-Servlet处理表单

  9. [剑指Offer] 26.二叉搜索树与双向链表

    [思路]因为二叉搜索树的中序遍历就是递增排列的,所以只要在中序遍历时将每个结点放入vector中,再分别为每个结点的左右指针赋值即可. /* struct TreeNode { int val; st ...

  10. Struts1文件上传

    package org.zln.struts.domain; import org.apache.struts.upload.FormFile; /** * Created by sherry on ...