51Nod 1212无向图最小生成树
prim
#include<stdio.h>
#include<string.h>
#define inf 0x3f3f3f3f
int G[][];
int vis[],lowc[];
int prim(int G[][],int n){
int i,j,p,minc,res=;
memset(vis,,sizeof(vis));//全部初值为0表示没有访问过;
vis[]=;
for(i=;i<=n;i++)
lowc[i]=G[][i];
for(i=;i<=n;i++){
minc=inf;
p=-;
for(j=;j<=n;j++){
if(vis[j]==&&lowc[j]<minc)
{minc=lowc[j];p=j;}
}
if(inf==minc) return -;//原图不连通
res+=minc;
vis[p]=;
for(j=;j<=n;j++){//更新lowc[]
if(vis[j]==&&lowc[j]>G[p][j])
lowc[j]=G[p][j];
}
}
return res;
}
int main(){
int n,m;
int x,y,w;
while(~scanf("%d %d",&n,&m)){
memset(G,inf,sizeof(G));
while(m--){
scanf("%d%d%d",&x,&y,&w);
G[x][y]=G[y][x]=w;
}
printf("%d\n",prim(G,n));
}
}
Kruskal
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 50005
int father[MAX], son[MAX];
int v, l; typedef struct Kruskal //存储边的信息
{
int a;
int b;
int value;
}; bool cmp(const Kruskal & a, const Kruskal & b)
{
return a.value < b.value;
} int unionsearch(int x) //查找根结点+路径压缩
{
return x == father[x] ? x : unionsearch(father[x]);
} bool join(int x, int y) //合并
{
int root1, root2;
root1 = unionsearch(x);
root2 = unionsearch(y);
if(root1 == root2) //为环
return false;
else if(son[root1] >= son[root2])
{
father[root2] = root1;
son[root1] += son[root2];
}
else
{
father[root1] = root2;
son[root2] += son[root1];
}
return true;
} int main()
{
int ncase, ltotal, sum, flag;
Kruskal edge[MAX];
scanf("%d%d", &v, &l);
ltotal = , sum = , flag = ;
for(int i = ; i <= v; ++i) //初始化
{
father[i] = i;
son[i] = ;
}
for(int i = ; i <= l ; ++i)
{
scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].value);
}
sort(edge + , edge + + l, cmp); //按权值由小到大排序
for(int i = ; i <= l; ++i)
{
if(join(edge[i].a, edge[i].b))
{
ltotal++; //边数加1
sum += edge[i].value; //记录权值之和
//cout<<edge[i].a<<"->"<<edge[i].b<<endl;
}
if(ltotal == v - ) //最小生成树条件:边数=顶点数-1
{
flag = ;
break;
}
}
if(flag) printf("%d\n", sum);
else printf("data error.\n");
return ;
}
51Nod 1212无向图最小生成树的更多相关文章
- 51Nod 1212 无向图最小生成树 (路径压缩)
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 &l ...
- 51nod 1212 无向图最小生成树(Kruskal模版题)
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 &l ...
- (图论)51NOD 1212 无向图最小生成树
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. 输入 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 <= M ...
- 51 nod 1212 无向图最小生成树(Kruckal算法/Prime算法图解)
1212 无向图最小生成树 N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. 收起 输入 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N < ...
- 51 nod 1212 无向图最小生成树
http://www.51nod.com/Challenge/Problem.html#problemId=1212 代码 #include<bits/stdc++.h> using na ...
- 51Nod-1212 无向图最小生成树
51Nod: 1212 无向图最小生成树. link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1212 1212 ...
- 51nod1212无向图最小生成树
1212 无向图最小生成树 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. Inpu ...
- 加权无向图 最小生成树 Prim算法 延迟版和即时版 村里修路该先修哪
本次要解决的问题是:你们村里那些坑坑洼洼的路,到底哪些路才是主干道? 小明:肯定是哪里都能到得了,并且去哪里都相对比较近,并且被大家共用程度高的路是啊! 具体是哪几条路呢?今天就可以给出准确答案 最小 ...
- 无向图最小生成树(prim算法)
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小.该算法于1930年由捷 ...
随机推荐
- 如何在Moodle中显示PPT课件
Moodle中目前是不直接支持PPT的,所以需要曲线救国: 1.安装 iSpring Free 8版本,免费版,其实是一个PPT的插件,在PPT的工具栏中有显示. 2.打开PPT后,直接在该工具中进行 ...
- svn 服务器搭建 (Linux)
1.svn目前在程序开发工程汇总应用非常普遍,所以学习svn的环境搭建还是很有必要的 2.本次安装的服务是Subversion(svn)针对的环境是Linux,Subversion(SVN) 是一个开 ...
- golang获取调用者的方法名及所在源码行数
package main import "runtime" import "log" func main() { test() } func test() { ...
- 【数据库】 SQL SERVER 2014 实用新特性
[数据库] SQL SERVER 2014 实用新特性 官方链接 一. 内存优化表 大幅提高数据库性能,不过目前没有窗口化设计只能写语句 二. 索引增强
- java 日期格式 毫秒 表示方法
参考URL:http://www.busfly.net/csdn/post/java_string_fomat_date_time_simpledateformat.html 关键代码: java.t ...
- Qt 实现在隐藏标题栏情况下,窗口的缩放(未成功)
呃,这是一个悲剧的版本,在这版本中,我按照网上大神的说法,试了一下,但是没有效果,不知道出错在了那里,和昨天一样,也是,没有理想的效果,这里贴上代码,记录一下 资料连接:放评论 需要包含头文件 #in ...
- Qt 贪吃蛇小游戏
简单的实现了走和变大的样子,剩下的还在完善 贴代码 #include "mainwindow.h" #include "ui_mainwindow.h" #in ...
- Selenide 简单实现自动化测试
Selenide 网址:http://selenide.org/ github 地址:https://github.com/codeborne/selenide Selenide 早些年一直使用,中间 ...
- spring+apache dbcp +oracle 连接池配置以及优化
特此记录 <!-- 数据源配置, 使用应用中的DBCP数据库连接池 --> <bean id="dataSource" class="org.apach ...
- ContOS软件包安装【零】
选择是“Minimal”安装 ,最小化. 越简单,越不容易出错. 1.听一些老鸟分析,选择安装包时应该按最小化原则,即不需要的或者不确定是否需要的就不安装,这样可以最大程度上确保系统安全.(安 ...