loj #2025. 「JLOI / SHOI2016」方
#2025. 「JLOI / SHOI2016」方
题目描述
上帝说,不要圆,要方,于是便有了这道题。
由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形。上帝把我们派到了一个有 NNN 行 MMM 列的方格图上,图上一共有 (N+1)×(M+1)(N + 1) \times (M + 1)(N+1)×(M+1) 个格点,我们需要做的就是找出这些格点形成了多少个正方形(换句话说,正方形的四个顶点都是格点)。
但是这个问题对于我们来说太难了,因为点数太多了,所以上帝删掉了这 (N+1)×(M+1)(N + 1) \times (M + 1)(N+1)×(M+1) 中的 KKK 个点。既然点变少了,问题也就变简单了,那么这个时候这些格点组成了多少个正方形呢?
输入格式
第一行包含三个整数 NNN,MMM,KKK,代表棋盘的行数、列数和不能选取的顶点个数。 保证 N,M≤1N, M \leq 1N,M≤1,K≤(N+1)×(M+1)K \leq (N + 1) \times (M + 1)K≤(N+1)×(M+1)。
接下来 KKK 行,每行包含两个正整数 XXX,YYY,代表第 XXX 行第 YYY 列的格点被删掉了。保证 0≤X≤N,0≤Y≤M0 \leq X \leq N, 0 \leq Y \leq M0≤X≤N,0≤Y≤M,且不会出现重复的格点。约定每行的格点从上到下依次用整数 000 到 NNN 编号,每列的格点依次用 000 到 MMM 编号。
输出格式
输出一个正整数,代表正方形个数对 100000007100\,000\,007100000007(108+710^8 + 7108+7)取模之后的数值。
样例
样例输入 1
2 2 4
1 0
1 2
0 1
2 1
样例输出 1
1
样例解释 1
如图所示,我们删掉了其中的四个格点,那么剩下的唯一的正方形便是最大的 2×22 \times 22×2 的正方形了。
样例输入 2
7 10 5
2 3
1 5
6 2
3 5
2 6
样例输出 2
429
样例输入 3
2 2 4
0 0
2 2
0 2
2 0
样例输出 3
1
样例解释 3
还剩下一个边长为 2\sqrt 2√2 的正方形。
数据范围与提示
Case # | N,MN, MN,M | KKK |
---|---|---|
1, 2 | ≤5\leq 5≤5 | ≤25\leq 25≤25 |
3, 4 | ≤50\leq 50≤50 | ≤50\leq 50≤50 |
5, 6 | ≤106\leq 10^6≤106 | =0= 0=0 |
7, 8 | ≤106\leq 10^6≤106 | ≤50\leq 50≤50 |
9, 10 | ≤106\leq 10^6≤106 | ≤200\leq 200≤200 |
11, 12 | ≤103\leq 10^3≤103 | ≤2×103\leq 2 \times 10^3≤2×103 |
13 ~ 20 | ≤106\leq 10^6≤106 | ≤2×103\leq 2 \times 10^3≤2×103 |
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#define mod 100000007
#define maxn 2010
#define gets(x,y) (1LL*((x)+(y))*((y)-(x)+1)>>1)
using namespace std;
int n,m,cnt,ans,t1,t2,t3,t4,a[maxn],b[maxn];
struct node{
int tot,fst[],px[maxn],py[maxn],nxt[maxn];
void insert(int x,int y){
int z=(x*+y)%;
px[++tot]=x;py[tot]=y;
nxt[tot]=fst[z];fst[z]=tot;
}
int find(int x,int y){
int z=(x*+y)%;
for(int p=fst[z];p;p=nxt[p])
if(px[p]==x && py[p]==y)return ;
return ;
}
}hash;
bool inmp(int x,int y){return x>=&&x<=m&&y>=&&y<=n;}
void calc(int x,int y,int z){
if(!x||!y||z<)return;
z=min(z,x+y);
x=min(x,z-);
y=min(y,z-);
t1=(t1+1LL*(z-y)*y)%mod;
t1=(t1+gets(z-x,y-))%mod;
}
void update(int u1,int v1,int u2,int v2){
if(inmp(u1,v1)&&inmp(u2,v2)){
int tmp=hash.find(u1,v1)+hash.find(u2,v2);
t2++;t3+=tmp;
if(tmp>)t4++;
}
}
void solve(int x1,int y1,int x2,int y2){
int dx=x2-x1,dy=y2-y1;
update(x1+dy,y1-dx,x2+dy,y2-dx);
update(x1-dy,y1+dx,x2-dy,y2+dx);
if(abs(dx+dy)&)return;
dy=(dx+dy)>>;dx-=dy;
update(x1+dx,y1+dy,x2-dx,y2-dy);
}
int main(){
scanf("%d%d%d",&m,&n,&cnt);
for(int i=;i<=cnt;i++){
scanf("%d%d",&a[i],&b[i]);
hash.insert(a[i],b[i]);
}
for(int i=;i<=m && i<=n;i++)
ans=(ans+1LL*i*(m-i+)%mod*(n-i+))%mod;
for(int i=;i<=cnt;i++){
calc(a[i],m-a[i],b[i]);
calc(a[i],m-a[i],n-b[i]); calc(b[i],n-b[i],a[i]);
calc(b[i],n-b[i],m-a[i]);
t1=(t1+min(a[i],b[i])+min(a[i],n-b[i])+min(m-a[i],b[i])+min(m-a[i],n-b[i]))%mod;
for(int j=;j<i;j++)
solve(a[i],b[i],a[j],b[j]);
}
printf("%d",(ans-t1+t2-t3/+t4/+mod)%mod);
return ;
}
loj #2025. 「JLOI / SHOI2016」方的更多相关文章
- 【LOJ】 #2025. 「JLOI / SHOI2016」方
题解 有什么LNOI啊,最后都是JLOI罢了 一道非常--懵逼的统计题 当然是容斥,所有的方案 - 至少有一个点坏掉的正方形 + 至少有两个点坏掉的正方形 - 至少有三个点坏掉的正方形 + 至少有四个 ...
- loj #2024. 「JLOI / SHOI2016」侦查守卫
#2024. 「JLOI / SHOI2016」侦查守卫 题目描述 小 R 和 B 神正在玩一款游戏.这款游戏的地图由 nnn 个点和 n−1n - 1n−1 条无向边组成,每条无向边连接两个点, ...
- loj #2026. 「JLOI / SHOI2016」成绩比较
#2026. 「JLOI / SHOI2016」成绩比较 题目描述 THU 的 G 系中有许许多多的大牛,比如小 R 的室友 B 神.B 神已经厌倦了与其他的同学比较 GPA(Grade Poin ...
- LOJ #2026「JLOI / SHOI2016」成绩比较
很好的锻炼推柿子能力的题目 LOJ #2026 题意 有$n$个人$ m$门学科,第$ i$门的分数为不大于$U_i$的一个正整数 定义A「打爆」B当且仅当A的每门学科的分数都不低于B的该门学科的分数 ...
- 【LOJ】#2026. 「JLOI / SHOI2016」成绩比较
题解 用\(f[i][j]\)表示考虑了前i个排名有j个人被碾压 \(f[i][j] = f[i - 1][k] \* C[k][j] \* C[N - k - 1][N - r[i] - j] \* ...
- 【LOJ】#2024. 「JLOI / SHOI2016」侦查守卫
题解 童年的回忆! 想当初,这是我考的第一次省选,我当时初二,我什么都不会,然后看着这个东西,是不是能用我一个月前才会的求lca,光这个lca我就调了一个多小时= =,然后整场五个小时,我觉得其他题不 ...
- loj2026 「JLOI / SHOI2016」成绩比较
orz #include <iostream> #include <cstdio> using namespace std; typedef long long ll; int ...
- loj2024「JLOI / SHOI2016」侦查守卫
too hard #include <iostream> #include <cstdio> using namespace std; int n, d, m, uu, vv, ...
- Loj #2495. 「AHOI / HNOI2018」转盘
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...
随机推荐
- AngularJS:包含
ylbtech-AngularJS:包含 1.返回顶部 1. AngularJS 包含 在 AngularJS 中,你可以在 HTML 中包含 HTML 文件. 在 HTML 中包含 HTML 文件 ...
- [Angularjs-学习笔记]工具篇
因为一开始学习前端知识一直都是在慕课网,所以这次准备学习下angularjs等了好久,终于慕课网出了angularjs的内容,于是准备开始跟着老师的步骤进行学习. 大漠老师关于开发工具的内容讲得比较快 ...
- JavaScript基本概念C - 真与假
真与假 与 c 和 c++ 非常相似, 但与 Java 不同, JS中被认为true或false范围很广.所有对象 (空字符串除外) 和非零数字都被视为 true.空字符串.零.null 和undef ...
- Http服务端
第一,使用node提供的http模块 var http=require('http'); 第二,创建一个服务器实例 通过http的createServer()方法. var server=http.c ...
- 问题:oracle floor;结果:Oracle的取整和四舍五入函数——floor,round,ceil,trunc使用说明
Oracle的取整和四舍五入函数——floor,round,ceil,trunc使用说明 (2011-04-06 16:10:35) 转载▼ 标签: 谈 分类: 渐行渐远 FLOOR——对给定的数字取 ...
- 触摸事件MultiTouch Events
备注: userInteractionEnabled = NO hidden = YES alpha = 0.0~0.01 //如果上面三个属性被设置了则无法接收触摸事件 1.- (void)t ...
- C语言学习笔记--指针和数组的关系
1.数组的本质 (1)数组是一段连续的内存空间 (2)数组的空间大小:sizeof(array_type)*array_size; (3)数组名可看做指向数组第一个元素的常量指针 (4)数组声明时编译 ...
- DAY11-MYSQL之ORM框架SQLAlchemy
一 介绍 SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取 ...
- Yahoo浮沉录
Yahoo这一路曾经出过很多好技术 然而,任何人如果只是把 Yahoo 当作一家缺乏聚焦的企业来看也许忽视了公司内部的那些创新—偶尔甚至还有一些很好的产品创意.就拿搜索来说吧,我们说的不是付费搜索,而 ...
- Strophe.Status的所有值
ERROR: 0 CONNECTING: 1 CONNFAIL: 2 AUTHENTICATING: 3 AUTHFAIL: 4 CONNECTED: 5 DISCONNECTED: 6 DISCON ...