题解【洛谷P1074】[NOIP2009]靶形数独
题解
一开始写了一个朴素的数独,无任何剪枝优化,得到了\(55\)分的好成绩。
就是这道题加一个计算分数。
代码如下(\(\mathrm{55\ pts}\)):
/********************************
Author: csxsl
Date: 2019/10/28
Language: C++
Problem: P1074
********************************/
#include <bits/stdc++.h>
#define itn int
#define gI gi
using namespace std;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
inline long long gl()
{
long long f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
int n, m, ans, a[10][10];
bool h[10][10], l[10][10], fz[10][10];
const int fenshu[10][10] =
{
{0,0,0,0,0,0,0,0,0,0},
{0,6,6,6,6,6,6,6,6,6},
{0,6,7,7,7,7,7,7,7,6},
{0,6,7,8,8,8,8,8,7,6},
{0,6,7,8,9,9,9,8,7,6},
{0,6,7,8,9,10,9,8,7,6},
{0,6,7,8,9,9,9,8,7,6},
{0,6,7,8,8,8,8,8,7,6},
{0,6,7,7,7,7,7,7,7,6},
{0,6,6,6,6,6,6,6,6,6}
};
inline int getfz(int x, int y) {return (x - 1) / 3 * 3 + (y - 1) / 3 + 1;}
inline void getans()
{
int sum = 0;
for (int i = 1; i <= 9; i+=1)
{
for (int j = 1; j <= 9; j+=1)
{
sum = sum + a[i][j] * fenshu[i][j];
}
}
if (sum > ans) ans = sum;
}
void dfs(int x, int y)
{
if (a[x][y])
{
if (x == 9 && y == 9) {getans(); return;}
else if (y == 9) dfs(x + 1, 1);
else dfs(x, y + 1);
}
else
{
for (int i = 1; i <= 9; i+=1)
{
if (!a[x][y] && !h[x][i] && !l[y][i] && !fz[getfz(x, y)][i])
{
a[x][y] = i;
h[x][i] = l[y][i] = fz[getfz(x, y)][i] = 1;
if (x == 9 && y == 9) {getans(); return;}
else if (y == 9) dfs(x + 1, 1);
else dfs(x, y + 1);
a[x][y] = 0;
h[x][i] = l[y][i] = fz[getfz(x, y)][i] = 0;
}
}
}
}
int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
for (int i = 1; i <= 9; i+=1)
{
for (int j = 1; j <= 9; j+=1)
{
a[i][j] = gi();
if (a[i][j]) h[i][a[i][j]] = l[j][a[i][j]] = fz[getfz(i, j)][a[i][j]] = 1;//标记数字
}
}
dfs(1, 1);//搜索
printf("%d\n", (ans == 0) ? (-1) : (ans));//输出
return 0;
}
常见的搜索优化方式有:
调换搜索顺序,让方案数少的先搜。
剪枝,又分为可行性剪枝和最优性剪枝。
这里可以思考如何调换搜索顺序:
不难发现,只要一个位置上填了数字,我们就直接递归下一个数字即可,这一行枚举的数的个数就与这一行\(0\)的个数有关。
因此,我们可以预处理处每一行\(0\)的个数,从小到大排序后再进行搜索。
用不同的顺序进行搜索,效率也会大不一样!
注意此处需要开一个三维数组\(\mathrm{vis[0/1/2][i][j]}\)。
\(\mathrm{vis[0/1/2][i][j]}\)分别表示第\(i\)行、第\(i\)列、第\(i\)个方阵有没有\(j\)这个数。
这样设的原因留给读者作为练习。
代码中的\(\mathrm{b[i]}\)表示搜索到了第几个数,顺序与每行\(0\)的个数有关。
调换搜索顺序后发现就可以\(\mathrm{AC}\)了。
代码
/********************************
Author: csxsl
Date: 2019/10/28
Language: C++
Problem: P1074
********************************/
#include <bits/stdc++.h>
#define itn int
#define gI gi
using namespace std;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
inline long long gl()
{
long long f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
int n, m, ans, a[10][10], b[85];
bool vis[3][10][10];
const int fenshu[10][10] =
{
{0,0,0,0,0,0,0,0,0,0},
{0,6,6,6,6,6,6,6,6,6},
{0,6,7,7,7,7,7,7,7,6},
{0,6,7,8,8,8,8,8,7,6},
{0,6,7,8,9,9,9,8,7,6},
{0,6,7,8,9,10,9,8,7,6},
{0,6,7,8,9,9,9,8,7,6},
{0,6,7,8,8,8,8,8,7,6},
{0,6,7,7,7,7,7,7,7,6},
{0,6,6,6,6,6,6,6,6,6}
};//每个点对应的分值
struct Node
{
int Zero_geshu/*每行0的个数*/, h/*是哪一行*/;
} zz[10];
inline int getfz(int x, int y) {return (x - 1) / 3 * 3 + (y - 1) / 3 + 1;}//(i,j)对应的方阵
inline void getans()//计算分值
{
int sum = 0;
for (int i = 1; i <= 9; i+=1)
{
for (int j = 1; j <= 9; j+=1)
{
sum = sum + a[i][j] * fenshu[i][j];
}
}
if (sum > ans) ans = sum;//更新答案
}
void dfs(int bh)//搜索
{
if (bh == 82) {getans(); return;}//搜完了
int x = b[bh] / 9 + 1, y = b[bh] % 9;//求出当前的行和列
if (!y) y = 9, x = b[bh] / 9;//特判y=0
int g = getfz(x, y);//求出当前所在的方阵编号
if (a[x][y]) dfs(bh + 1);//当前位置已经有数
else
{
for (int i = 1; i <= 9; i+=1)//枚举
{
if (!vis[0][x][i] && !vis[1][y][i] && !vis[2][g][i])
{
vis[0][x][i] = vis[1][y][i] = vis[2][g][i] = 1;
a[x][y] = i;
//填数
dfs(bh + 1);
//递归
a[x][y] = 0;
vis[0][x][i] = vis[1][y][i] = vis[2][g][i] = 0;
//回溯
}
}
}
}
inline bool cmp(Node x, Node y) {return x.Zero_geshu < y.Zero_geshu;}//按每一行0的个数排序
int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
for (int i = 1; i <= 9; i+=1)
{
zz[i].h = i;
int cnt = 0;
for (int j = 1; j <= 9; j+=1)
{
a[i][j] = gi();
int g = getfz(i, j);
if (a[i][j])
{
vis[0][i][a[i][j]] = 1;
vis[1][j][a[i][j]] = 1;
vis[2][g][a[i][j]] = 1;//标记有数
}
else ++cnt;//增加这一行0的个数
}
zz[i].Zero_geshu = cnt;
}
sort(zz + 1, zz + 1 + 9, cmp);//排序
int num = 0;
for (int i = 1; i <= 9; i+=1)
{
for (int j = 1; j <= 9; j+=1)
{
b[++num] = (zz[i].h - 1) * 9 + j;//编号
}
}
dfs(1);
printf("%d\n", (ans == 0) ? (-1) : (ans));//输出,注意判断-1
return 0;//结束
}
题解【洛谷P1074】[NOIP2009]靶形数独的更多相关文章
- 【题解】洛谷P1074 [NOIP2009TG] 靶形数独(DFS+剪枝)
洛谷P1074:https://www.luogu.org/problemnew/show/P1074 思路 这道题一看就是DFS 打一个分数表方便后面算分 我用x y z数组分别表示行 列 宫 是否 ...
- 【NOIP2009】【CJOJ1687】【洛谷1074】靶形数独
题面 Description 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z博士请教,Z 博士拿出 ...
- [洛谷P1074] 靶形数独
洛谷题目链接:靶形数独 题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博 ...
- [NOIP2009]靶形数独 题解
407. [NOIP2009] 靶形数独 时间限制:5 s 内存限制:128 MB [问题描述] 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低. ...
- NOIP2009靶形数独
题目描述: 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博士拿出了他最近发明的“ ...
- NOIP2009靶形数独[DFS 优化]
描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z博士请教,Z 博士拿出了他最近发明的“靶形数独 ...
- [NOIP2009] 提高组 洛谷P1074 靶形数独
题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他 们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教, Z 博士拿出了他最近发明的 ...
- 洛谷P1074 靶形数独 [搜索]
题目传送门 题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他 们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教, Z 博士拿出了 ...
- 洛谷——P1074 靶形数独
P1074 靶形数独 题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他 们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教, Z ...
- 洛谷 P1074 靶形数独 Label:search 不会
题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他 们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教, Z 博士拿出了他最近发明的 ...
随机推荐
- 关于java静态存储类的一个知识点
今天在写代码的时候产生了一个很奇怪的问题:静态类里的数据在其他类中更改之后,是否会保存 然后就动手试验了一下,结果是 ·在更改数据的类中,输出数据都是更够以后的数据 ·在先执行更改数据的类之后执行第二 ...
- FZU-Problem 2150 Fire Game(两点bfs)
Fat brother and Maze are playing a kind of special (hentai) game on an N*M board (N rows, M columns) ...
- laravel框架api路由
Route::group(['namespace' => 'Api'], function (){ Route::any('send','SmsController@send'); }); gr ...
- socket编程执行远程命令实现_python
一.单客户端连接的例子: 服务端: import socket,os,subprocess server=socket.socket() server.bind(('localhost',1234)) ...
- 机器学习作业(三)多类别分类与神经网络——Python(numpy)实现
题目太长了!下载地址[传送门] 第1题 简述:识别图片上的数字. import numpy as np import scipy.io as scio import matplotlib.pyplot ...
- Redis 数据库使用和搭建
1.redis中文网 http://www.redis.cn/documentation.html 2.数据类型介绍 http://redis.cn/topics/data-types-intro.h ...
- HBuilderX开发app实现自动更新版本
需求说明:使用MUI+Vue等技术并且通过HBuilderX打包开发移动app,在有版本更新时需要自动提示用户有新版本,并且可以点击下载自动安装. 思路说明: 应用打开时(使用Vue的生命周期mo ...
- flask入门(三)
表单 request.form 能获取POST 请求中提交的表单数据.但是这样不太安全,容易受到恶意攻击.对此,flask有一个flask-wtf扩展,用于避免这一情况 在虚拟环境下用pip inst ...
- 【转载】JS导出CSV文件
转自:http://www.cnblogs.com/dengnan/p/3990211.html 通过自己实际测试有以下几种方法 方法一通过a标签实现,把要导出的数据用“\n”和“,”拼接成一个字符串 ...
- jsp中连接数据库及实现增删改查
导入jdbc工具包 <%@page import="asp.engine.util.PageHelper"%><%@ page import="asp. ...