SVM的优缺点
优点
- 可用于线性/非线性分类,也可以用于回归,泛化错误率低,也就是说具有良好的学习能力,且学到的结果具有很好的推广性。
- 可以解决小样本情况下的机器学习问题,可以解决高维问题,可以避免神经网络结构选择和局部极小点问题。
- SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。
缺点
- 对参数调节和和函数的选择敏感。
SVM的优缺点的更多相关文章
- SVM与LR的区别以及SVM的优缺点
对于异常数据,SVM比LR更好 SVM的优缺点: 优点:1.提供非常精确的分类器 2.更少的过拟合(因为有L2正则化项0.5||w||2),对噪声数据更加鲁棒(因为损失函数的原因) 缺点:1.SVM是 ...
- 机器学习笔记—svm算法(上)
本文申明:本文原创,如转载请注明原文出处. 引言:上一篇我们讲到了logistic回归,今天我们来说一说与其很相似的svm算法,当然问题的讨论还是在线性可分的基础下讨论的. 很多人说svm是目前最好的 ...
- SVM原理与实践
SVM迅速发展和完善,在解决小样本.非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,已经在许多领域(生物信息学,文本和手写识别等)都取 ...
- 支持向量机(SVM)入门
一.简介 支持向量机,一种监督学习方法,因其英文名为support vector machine,故一般简称SVM. 通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器, ...
- 【Supervised Learning】支持向量机SVM (to explain Support Vector Machines (SVM) like I am a 5 year old )
Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SV ...
- SVM面试知识点总结
1. SVM 原理 SVM 是一种二类分类模型.它的基本思想是在特征空间中寻找间隔最大的分离超平面使数据得到高效的二分类,具体来讲,有三种情况(不加核函数的话就是个线性模型,加了之后才会升级为一个非线 ...
- 【机器学习入门笔记】第 2 课:SVM
Support Vector machines 为什么人们称一种算法为机器,我也不知道(俄罗斯人发明) 粗略的来说,支持向量机所做的就是去寻找分割线(separating) 或者通常称之为超平面,介于 ...
- python大战机器学习——支持向量机
支持向量机(Support Vector Machine,SVM)的基本模型是定义在特征空间上间隔最大的线性分类器.它是一种二类分类模型,当采用了核技巧之后,支持向量机可以用于非线性分类. 1)线性可 ...
- 各常用分类算法的优缺点总结:DT/ANN/KNN/SVM/GA/Bayes/Adaboosting/Rocchio
1决策树(Decision Trees)的优缺点 决策树的优点: 一. 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义. 二. 对于决策树,数据的准备往往是简单或者是不必要的. ...
随机推荐
- 生产环境实践:Cana实现MySQL到ES实时同步
注:由于文章篇幅有限,完整文档可扫下面二维码免费获取,更有深受好评的大数据实战精英+架构师好课等着你. 速点链接加入高手战队:http://www.dajiangtai.com/course/112. ...
- IDEAVIM 常用快捷键总结和使用说明
---title: ideavim常用快捷键总结和使用tags: grammar_cjkRuby: true--- #### `待办` ideavim用于编程的常用快捷键说明 常用快捷键 插入(光标前 ...
- 2020 CCPC比赛
https://ac.nowcoder.com/acm/contest/4010/A 这道题枚举区间长度的贡献值: 当区间长度为1时,就是所有元音数的个数: 当区间长度为2时,区间[2,n-1]的数贡 ...
- SpringMVC项目使用elastic search搜索
项目需要,引入了elastic search(后续简称es),后面将介绍本地对es的安装,使用以及java连接es查询的整个过程. 1.es索引字段建立与修改,以curl新增一个索引字段示例 curl ...
- html集合
<!DOCTYPE> //声明文档类型 <!DOCTYPE> 声明必须是 HTML 文档的第一行,位于 <html> 标签之前. <!DOCTYPE> ...
- 图的最短路径算法Dijkstra算法模板
Dijkstra算法:伪代码 //G为图,一般设为全局变量,数组d[u]为原点到达个点的额最短路径, s为起点 Dijkstra(G, d[u], s){ 初始化: for (循环n次){ u = 是 ...
- C#中通过SendARP读取MAC地址
C#中通过SendARP读取MAC地址: using System.Runtime.InteropServices; publicstaticstring GetMacBySendARP(string ...
- 利用AJAX JAVA 通过Echarts实现豆瓣电影TOP250的数据可视化
mysql表的结构 数据(数据是通过爬虫得来的,本篇文章不介绍怎么爬取数据,只介绍将数据库中的数据可视化): 下面就是写代码了: 首先看一下项目目录: 数据库层 业务逻辑层 pac ...
- 【转载】C/C++编译过程分析
转自:http://www.360doc.com/content/14/0109/16/835125_343879650.shtml C/C++编译过程 C/C++编译过程主要分为4个过程 1) 编译 ...
- 百炼OJ - 1003 - Hangover
题目链接 思路 求一个数列的前n项和(1/2, 1/3, ...., 1/n)大于所给数所需的项数. #include<stdio.h> int main() { float a; whi ...