GYM100633J. Ceizenpok’s formula 扩展lucas模板
2.0 s
256 MB
standard input
standard output
Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenpok’s formula. This formula has only three arguments: n, k and m, and its value is a number of k-combinations of a set of n modulo m.
While the whole Universe is trying to guess what the formula is useful for, we need to automate its calculation.
Single line contains three integers n, k, m, separated with spaces (1 ≤ n ≤ 1018, 0 ≤ k ≤ n, 2 ≤ m ≤ 1 000 000).
Write the formula value for given arguments n, k, m.
2 1 3
2
4 2 5
1
【题解】
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <map>
#include <string>
#include <cmath>
#include <sstream>
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
#define abs(a) ((a) < 0 ? (-1 * (a)) : (a))
template<class T>
inline void swap(T &a, T &b)
{
T tmp = a;a = b;b = tmp;
}
inline void read(long long &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '') c = ch, ch = getchar();
while(ch <= '' && ch >= '') x = x * + ch - '', ch = getchar();
if(c == '-') x = -x;
}
const long long INF = 0x3f3f3f3f; long long pow(long long a, long long b, long long mod)
{
long long r = , base = a % mod;
for(;b;b >>= )
{
if(b & ) r *= base, r %= mod;
base *= base, base %= mod;
}
return r;
}
void exgcd(long long a, long long b, long long &x, long long &y)
{
if(!b)x = , y = ;
else exgcd(b, a%b, y, x), y -= (a / b) * x;
}
long long ni(long long x, long long mod)
{
long long inv, y; exgcd(x, mod, inv, y);
inv = (inv % mod + mod) % mod;
if(!inv) inv = mod;
return inv;
}
int tiaoshi;
long long calc(long long n, long long p, long long pt)
{
if(n == ) return ;
long long ans = ;
for(long long i = ;i <= pt;++ i) if(i % p) ans *= i, ans %= pt;
ans = pow(ans, n/pt, pt);
for(long long i = ;i <= n%pt;++ i)
if(i % p)
ans *= i, ans %= pt;
return ans * calc(n/p, p, pt) % pt;
}
long long C(long long n, long long m, long long p, long long pt)
{
if(n < m || n < || m < ) return ;
long long cnt = ;
for(long long i = n;i;i /= p) cnt += i/p;
for(long long i = m;i;i /= p) cnt -= i/p;
for(long long i = n - m;i;i /= p) cnt -= i/p;
return pow(p, cnt, pt) * calc(n, p, pt) % pt * ni(calc(m, p, pt), pt) % pt * ni(calc(n - m, p, pt), pt) % pt;
}
long long exlucas(long long n, long long m, long long mod)
{
long long tmp2 = mod, ans = ;
for(long long i = ;i <= mod;++ i)
if(tmp2 % i == )
{
long long pt = ;
while(tmp2 % i == ) tmp2 /= i, pt *= i;
long long tmp3 = C(n, m, i, pt);
ans += tmp3 * (mod/pt) % mod * ni(mod/pt, pt) % mod;
ans %= mod;
}
return ans;
}
long long n,m,p;
int main()
{
read(n), read(m), read(p);
printf("%lld", exlucas(n, m, p));
return ;
}
GYM100633J
GYM100633J. Ceizenpok’s formula 扩展lucas模板的更多相关文章
- Codeforces.100633J.Ceizenpok's formula(扩展Lucas)
题目链接 ->扩展Lucas //求C_n^k%m #include <cstdio> typedef long long LL; LL FP(LL x,LL k,LL p) { L ...
- codeforces2015ICL,Finals,Div.1#J Ceizenpok’s formula 扩展Lucas定理 扩展CRT
默默敲了一个下午,终于过了, 题目传送门 扩展Lucas是什么,就是对于模数p,p不是质数,但是不大,如果是1e9这种大数,可能没办法, 对于1000000之内的数是可以轻松解决的. 题解传送门 代码 ...
- bzoj 2142 礼物——扩展lucas模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- codeforces2015ICL,Finals,Div.1#J Ceizenpok’s formula【扩展lucas】
传送门 [题意]: 求C(n,k)%m,n<=108,k<=n,m<=106 [思路]: 扩展lucas定理+中国剩余定理 #include<cstdio> usi ...
- Ceizenpok’s formula Gym - 100633J 扩展Lucas定理 + 中国剩余定理
http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://ww ...
- 扩展CRT +扩展LUCAS
再次感谢zyf2000超强的讲解. 扩展CRT其实就是爆推式子,然后一路合并,只是最后一个式子上我有点小疑惑,但整体还算好理解. #include<iostream> #include&l ...
- [学习笔记]扩展LUCAS定理
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...
- BZOJ - 2142 礼物 (扩展Lucas定理)
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...
随机推荐
- 19.SimLogin_case05
# 使用自造的cookies登录马蜂窝 import requests from lxml import etree str = 'mfw_uuid=5bcfcc20-b235-fbbe-c1d6-a ...
- JDK1.8中文CHM下载 -- java开发搬运工
网上一番查找后,发现csdn有,但是要收费,之后从某地找到热心网友的分享,现贡献给大家! 不啰嗦,直接上货! 链接:https://pan.baidu.com/s/1b6Wg7LiUZsFSYGsvR ...
- JavaScript基础的一些小总结
一.js变量 1.变量声明: var 关键字来进行变量声明 变量是弱类型 1.数字 2.小数 3.boolean 4.字符串 4.字符 验证数据类型:1.整数,小数是numbe ...
- Python第二课-输入输出
name = input() 输入的字符串已经赋值给变量name print() 输出内容 print(,) print中,连接字符串相当于空格
- printk函数
一个不同是 printk 允许你根据消息的严重程度对其分类, 通过附加不同的记录级别或者 优先级在消息上. 你常常用一个宏定义来指示记录级别. 例如, KERN_INFO, 我们之前曾 在一些打印语句 ...
- linq学习(第二部分)
8.匿名方法 (1)源起 在上面的例子中 为了得到序列中较大的值 我们定义了一个More方法 var d1 = new Predicate<int>(More); 然而这个方法,没有太多逻 ...
- CF627A Xor Equation
题意:a+b=s,a^b=x(异或).问有多少有序Z+对(a,b)满足条件. 标程: #include<cstdio> using namespace std; typedef long ...
- loj6247 九个太阳
题意: k<=2^20,n<=10^15. 标程: #include<cstdio> using namespace std; typedef long long ll; ; ...
- nodejs vue 微信公众号开发(二)申请微信测试号
1.打开微信测试公众号开发平台http://mp.weixin.qq.com/debug/cgi-bin/sandbox?t=sandbox/login 扫码登陆
- [ javasript ] javascript中的each遍历!
1.数组中的each var arr = [ "one", "two", "three", "four"]; $.eac ...