J. Ceizenpok’s formula
time limit per test

2.0 s

memory limit per test

256 MB

input

standard input

output

standard output

Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenpok’s formula. This formula has only three arguments: n, k and m, and its value is a number of k-combinations of a set of n modulo m.

While the whole Universe is trying to guess what the formula is useful for, we need to automate its calculation.

Input

Single line contains three integers n, k, m, separated with spaces (1 ≤ n ≤ 1018, 0 ≤ k ≤ n, 2 ≤ m ≤ 1 000 000).

Output

Write the formula value for given arguments n, k, m.

Examples
Input
2 1 3
Output
2
Input
4 2 5
Output
1
 
 
 

【题解】

裸的扩展lucas + CRT,推荐博文http://blog.csdn.net/clove_unique/article/details/54571216
因为特殊情况k = 0的时候,我以为是0,加了个特判,结果应该是1,不用特判。。。。。。。。。。卡了我半个晚上
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <map>
#include <string>
#include <cmath>
#include <sstream>
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
#define abs(a) ((a) < 0 ? (-1 * (a)) : (a))
template<class T>
inline void swap(T &a, T &b)
{
T tmp = a;a = b;b = tmp;
}
inline void read(long long &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '') c = ch, ch = getchar();
while(ch <= '' && ch >= '') x = x * + ch - '', ch = getchar();
if(c == '-') x = -x;
}
const long long INF = 0x3f3f3f3f; long long pow(long long a, long long b, long long mod)
{
long long r = , base = a % mod;
for(;b;b >>= )
{
if(b & ) r *= base, r %= mod;
base *= base, base %= mod;
}
return r;
}
void exgcd(long long a, long long b, long long &x, long long &y)
{
if(!b)x = , y = ;
else exgcd(b, a%b, y, x), y -= (a / b) * x;
}
long long ni(long long x, long long mod)
{
long long inv, y; exgcd(x, mod, inv, y);
inv = (inv % mod + mod) % mod;
if(!inv) inv = mod;
return inv;
}
int tiaoshi;
long long calc(long long n, long long p, long long pt)
{
if(n == ) return ;
long long ans = ;
for(long long i = ;i <= pt;++ i) if(i % p) ans *= i, ans %= pt;
ans = pow(ans, n/pt, pt);
for(long long i = ;i <= n%pt;++ i)
if(i % p)
ans *= i, ans %= pt;
return ans * calc(n/p, p, pt) % pt;
}
long long C(long long n, long long m, long long p, long long pt)
{
if(n < m || n < || m < ) return ;
long long cnt = ;
for(long long i = n;i;i /= p) cnt += i/p;
for(long long i = m;i;i /= p) cnt -= i/p;
for(long long i = n - m;i;i /= p) cnt -= i/p;
return pow(p, cnt, pt) * calc(n, p, pt) % pt * ni(calc(m, p, pt), pt) % pt * ni(calc(n - m, p, pt), pt) % pt;
}
long long exlucas(long long n, long long m, long long mod)
{
long long tmp2 = mod, ans = ;
for(long long i = ;i <= mod;++ i)
if(tmp2 % i == )
{
long long pt = ;
while(tmp2 % i == ) tmp2 /= i, pt *= i;
long long tmp3 = C(n, m, i, pt);
ans += tmp3 * (mod/pt) % mod * ni(mod/pt, pt) % mod;
ans %= mod;
}
return ans;
}
long long n,m,p;
int main()
{
read(n), read(m), read(p);
printf("%lld", exlucas(n, m, p));
return ;
}

GYM100633J

GYM100633J. Ceizenpok’s formula 扩展lucas模板的更多相关文章

  1. Codeforces.100633J.Ceizenpok's formula(扩展Lucas)

    题目链接 ->扩展Lucas //求C_n^k%m #include <cstdio> typedef long long LL; LL FP(LL x,LL k,LL p) { L ...

  2. codeforces2015ICL,Finals,Div.1#J Ceizenpok’s formula 扩展Lucas定理 扩展CRT

    默默敲了一个下午,终于过了, 题目传送门 扩展Lucas是什么,就是对于模数p,p不是质数,但是不大,如果是1e9这种大数,可能没办法, 对于1000000之内的数是可以轻松解决的. 题解传送门 代码 ...

  3. bzoj 2142 礼物——扩展lucas模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...

  4. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  5. codeforces2015ICL,Finals,Div.1#J Ceizenpok’s formula【扩展lucas】

    传送门 [题意]: 求C(n,k)%m,n<=108,k<=n,m<=106 [思路]: 扩展lucas定理+中国剩余定理    #include<cstdio> usi ...

  6. Ceizenpok’s formula Gym - 100633J 扩展Lucas定理 + 中国剩余定理

    http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://ww ...

  7. 扩展CRT +扩展LUCAS

    再次感谢zyf2000超强的讲解. 扩展CRT其实就是爆推式子,然后一路合并,只是最后一个式子上我有点小疑惑,但整体还算好理解. #include<iostream> #include&l ...

  8. [学习笔记]扩展LUCAS定理

    可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...

  9. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

随机推荐

  1. 简介、变量、常数、if、基础数据类型、注释、input()

    ​ ### 1.python的历史 python2和python3的区别 python2 源码不统一,重复代码 python 源码统一,没有重复代码 2004 Django框架的诞生 2.python ...

  2. Activiti常用类介绍

    为什么要使用工作流? 传统的设计在流程发生变化时的弊端: 1. 流程相关的属性和业务对象的属性,都放到了业务对象中. 2. 流程相关的逻辑和业务逻辑,都放到的业务逻辑中 常用类 ProcessEngi ...

  3. (转)Nginx+Php-fpm运行原理详解

    一.代理与反向代理 现实生活中的例子 1.正向代理:访问google.com 如上图,因为google被墙,我们需要vpn翻墙才能访问google.com. vpn对于“我们”来说,是可以感知到的(我 ...

  4. matlab之原始处理图像几何变换

    (一)图像几何变换理论知识 (1)图像的平移与比例 图像的平移很简单,平移前后的坐标分别为(x,y)和(x',y'),则满足的关系式为 x'= x +Tx: y'= y +Ty: 其中Tx与Ty分别为 ...

  5. 【JZOJ3301】家族

    description 阿狸和桃子养了n 个小阿狸, 小阿狸们每天都在一起玩的很开心. 作为工程师的阿狸在对小阿狸们之间的关系进行研究以后发现了小阿狸的人际关系由某种神奇的相互作用决定, 阿狸称之为& ...

  6. CF1097E Egor and an RPG game

    最少反链划分数 = 最长链.实现:每次找出所有极大元作为一个反链. 任意长度小于k * (k + 1) / 2的排列都能被划分为不多于k个单调序列.且这是一个紧的上界. 然后这题就可以切了. 题意:给 ...

  7. LUOGU P1505 [国家集训队]旅游 (树链剖分+线段树)

    传送门 解题思路 快被调死的码农题,,,其实就是一个边权下放到点权的线段树+树剖. #include<iostream> #include<cstdio> #include&l ...

  8. Thrift(PHP)入门无错篇章(一)

    一.安装篇 博主注:截至2017-10-10,官网上thrift最新版0.10.0一直无法成功编译.所以,请选择0.9.3版本,避免走各种弯路: wget http://apache.fayea.co ...

  9. 解决MySQL登录ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using passwor)问题

    问题描述 今天在MAC上安装完MySQL后,MYSQL默认给分配了一个默认密码,但当自己在终端上使用默认密码登录的时候,总会提示一个授权失败的错误:Access denied for user ‘ro ...

  10. sed应用 升级场景配置文件更新 指定行追加

    function addLine() { confFile=configuration.xml isExist=`cat ${confFile} | grep "<listen_ena ...