传送门

首先不考虑带环的仙人掌,如果只是一棵普通的树,可以通过dp求每棵子树中的最长链和次长链求树的直径。

那么如果dfs的时候遇到了环,应该用环上的两点挂着的最长链加上两点间的距离来更新树的直径,并用环上一点的最长链加上它到环的根的距离来更新环的根的最长链。

选择环上两点来更新直径,为了考虑到所有选择,将环断开并拷贝一份新的衔接在后面,形成长为二倍的串。用dp[i]+dp[j]+j-i(i、j为在串中位置)更新直径,单调队列维护单调递减的dp[i]-i,并且如果当前点和队头的距离超过半个环就队头出队。

dfs的时候注意只用low[v]>dfn[u]的v来更新直径和u的最长链,判断是否有环的时候也注意让环的根成为环中深度最浅的,即判断dfn[v]>dfn[u],使u成为环的根,v为环的最后一个点。

#include<iostream>
#include<cstdio>
using namespace std;
const int N=;
int n,m,dp[N],ans,dis[N];
int ver[],Next[],head[N],tot,f[N];
void add(int x,int y){
ver[++tot]=y;
Next[tot]=head[x];
head[x]=tot;
}
int tim,dfn[N],low[N],a[*N],pos[*N],q[*N];
void solve(int x,int y){
int cnt=dis[y]-dis[x]+;
for(int i=y;i!=x;i=f[i]){
a[cnt--]=i;
}
a[cnt]=x;
cnt=dis[y]-dis[x]+;
for(int i=;i<=cnt;i++){
a[i+cnt]=a[i];
}
int l=,r=;
pos[]=,q[]=dp[a[]]-;
for(int i=;i<=*cnt;i++){
while(i-pos[l]>cnt/&&l<=r)l++;
ans=max(ans,q[l]+dp[a[i]]+i);
while(l<=r&&q[r]<=dp[a[i]]-i)r--;
q[++r]=dp[a[i]]-i;
pos[r]=i;
}
for(int i=;i<=cnt;i++){
dp[x]=max(dp[x],dp[a[i]]+min(i-,cnt-i+));
}
}
void dfs(int x,int fa){
dfn[x]=low[x]=++tim;
f[x]=fa;
for(int i=head[x];i;i=Next[i]){
int y=ver[i];
if(y==fa)continue;
if(!dfn[y]){
dis[y]=dis[x]+;
dfs(y,x);
low[x]=min(low[x],low[y]);
}
else low[x]=min(low[x],dfn[y]);
if(dfn[x]<low[y]){
ans=max(ans,dp[x]+dp[y]+);
dp[x]=max(dp[x],dp[y]+);
}
}
for(int i=head[x];i;i=Next[i]){
int y=ver[i];
if(y==fa)continue;
if(f[y]!=x&&dfn[y]>dfn[x]){
solve(x,y);
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=,k,lst,x;i<=m;i++){
scanf("%d",&k);
lst=;
while(k--){
scanf("%d",&x);
if(lst){
add(lst,x),add(x,lst);
}
lst=x;
}
}
dis[]=;
dfs(,);
printf("%d",ans);
return ;
}

洛谷P4244 [SHOI2008]仙人掌图 II的更多相关文章

  1. 洛谷 P4244 [SHOI2008]仙人掌图 II 解题报告

    P4244 [SHOI2008]仙人掌图 II 题目背景 题目这个II是和SHOI2006的仙人掌图区分的,bzoj没有. 但是实际上还是和bzoj1023是一个题目的. 题目描述 如果某个无向连通图 ...

  2. P4244 [SHOI2008]仙人掌图 II

    传送门 仙人掌直径,以前好像模拟赛的时候做到过一道基环树的直径,打了个很麻烦的然而还错了--今天才发现那就是这个的弱化版啊-- 如果是树的话用普通的dp即可,记\(f[u]\)表示\(u\)往下最长能 ...

  3. [SHOI2008]仙人掌图 II——树形dp与环形处理

    题意: 给定一个仙人掌,边权为1 距离定义为两个点之间的最短路径 直径定义为距离最远的两个点的距离 求仙人掌直径 题解: 类比树形dp求直径. f[i]表示i向下最多多长 处理链的话,直接dp即可. ...

  4. [SHOI2008]仙人掌图

    [SHOI2008]仙人掌图 LG传送门 还不会仙人掌的同学可以看看我对仙人掌知识的一些梳理. 题意就是求仙人掌的直径,直径定义为图中最短路径最长的两点间的最短路径长度. 按照套路,先考虑求树的直径我 ...

  5. 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...

  6. 洛谷 P1182 数列分段 Section II

    洛谷 P1182 数列分段 Section II 洛谷传送门 题目描述 对于给定的一个长度为N的正整数数列A-iA−i,现要将其分成M(M≤N)M(M≤N)段,并要求每段连续,且每段和的最大值最小. ...

  7. 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)

    洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...

  8. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  9. Bzoj1018/洛谷P4246 [SHOI2008]堵塞的交通(线段树分治+并查集)

    题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内 ...

随机推荐

  1. 生成器yield(17-06)

    yield  执行以上代码,yield后面可以有返回值 next() 获取 next的使用次数,是你生成器中yield出现的次数 def p(): print("ok") yiel ...

  2. 小tips: zoom和transform:scale的区别

    小tips: zoom和transform:scale的区别 转自 张鑫旭 前端大神 by zhangxinxu from http://www.zhangxinxu.com本文地址:http://w ...

  3. Python第二课-输入输出

    name = input() 输入的字符串已经赋值给变量name print() 输出内容 print(,) print中,连接字符串相当于空格

  4. IDA 远程调试设置

    第一步,先去 IDA   dbgsrv  这个目录下,找到要调试的那个远程计算机对应的可用客户端, 比如,android_server, 把它拷贝到目标计算机中, 比如 adb push .... 然 ...

  5. 《代码整洁之道》ch5~ch9读书笔记 PB16110698(~3.15) 第二周

    <代码整洁之道>ch5~ch9读书笔记 本周我阅读了本书的第5~9章节,进一步了解整洁代码需要注意的几个方面:格式.对象与数据结构.错误处理.边界测试.单元测试和类的规范.以下我将分别记录 ...

  6. 2018-8-10-win10-uwp-使用资源在后台创建控件

    title author date CreateTime categories win10 uwp 使用资源在后台创建控件 lindexi 2018-08-10 19:17:19 +0800 2018 ...

  7. DOM节点的创建、插入、删除

    值得注意的是:节点的创建.插入以及删除都是操作父级容器.(1)创建var newDiv = documnet.createElement('div'); ——创建的元素只能操作一次 (2)插入/追加a ...

  8. 提高Modelsim仿真速度的方法(1) -- force

    假如主驱动时钟频率很高,因为要一个周期输出,仿真时间过长,仿真速度慢是自然. 但是仿真中,并不是每个驱动周期都是必要的,这时可以使用force命令把想要的信号提前制造出来. 事实上,对于使用到PLL的 ...

  9. csps-s模拟测试60嘟嘟噜,天才绅士少女助手克里斯蒂娜,凤凰院凶真题解

    题面:https://www.cnblogs.com/Juve/articles/11625190.html 嘟嘟噜: 约瑟夫问题 第一种递归的容易re,但复杂度较有保证 第二种适用与n大于m的情况 ...

  10. 洛谷P5341 [TJOI2019]甲苯先生和大中锋的字符串

    原题链接P5341 [TJOI2019]甲苯先生和大中锋的字符串 题目描述 大中锋有一个长度为 n 的字符串,他只知道其中的一个子串是祖上传下来的宝藏的密码.但是由于字符串很长,大中锋很难将这些子串一 ...