题解?noipT1还需要题解?正解就是$n^2$大暴力。

考试的时候打了$n^2$的暴力,也想到了正解的优化,然而觉得它太麻烦了,而且$n^2$怎么优化也过不了50000啊,而且即使不优化前面30分我也能拿到。

然而就把正解放弃了……完戏。

然而这题ifelse打的我好恶心啊……

ps.linux终端还是挺良心的,y1给我报错了,不然凉凉……

题解:

一个方块内部的贡献为:abs(x1(i)-x2(i))*abs(y1(i)-y2(i))*2;

然后$n^2$考虑方块间的贡献。

直接枚举肯定会T,考虑将输入排序,当不符合条件是break,居然快了这么多。

有一个坑点:

开始我写的是:else if(x1(j)>x2(i)&&y1(j)>y2(i))break;

但其实:else if(x1(j)>x2(i))break;就可以了。

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define MAXN 100010
#define LL long long
#define int LL
#define max(a,b) ((a)>(b)?(a):(b))
#define ma(x,y) memset(x,y,sizeof(x))
using namespace std;
int n,maxn,maxy;
int map[][];
struct ques
{
int x1,x2,ty1,ty2;
#define x1(i) que[i].x1
#define x2(i) que[i].x2
#define ty1(i) que[i].ty1
#define ty2(i) que[i].ty2
friend bool operator < (ques a,ques b)
{
return a.x1==b.x1?a.ty1<b.ty1:a.x1<b.x1;
}
}que[MAXN];
inline int read();
void QJ2();
signed main()
{
n=read();
for(int i=;i<=n;i++)
x1(i)=read(),ty1(i)=read(),x2(i)=read(),ty2(i)=read();
QJ2();
}
inline int read()
{
int s=;char a=getchar();
while(a<''||a>'')a=getchar();
while(a>=''&&a<=''){s=s*+a-'';a=getchar();}
return s;
}
void QJ2()
{
sort(que+,que+n+);
LL ans=;
for(int i=;i<=n;i++)
ans+=1ll*abs(x1(i)-x2(i))*abs(ty1(i)-ty2(i))*;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
if(i!=j)
{
if(ty1(j)==ty2(i)+)//j上
{
int ttt=min(x2(j),x2(i))-max(x1(j),x1(i))+;
if(ttt>)
{
ans+=(ttt-)*;
if(abs(x1(i)-x1(j))>)ans++;
if(abs(x2(i)-x2(j))>)ans++;
}
else if(abs(x1(i)-x1(j))==||abs(x2(i)-x2(j))==)ans++;
}
else if(ty2(j)==ty1(i)-)//j下
{
int ttt=min(x2(j),x2(i))-max(x1(j),x1(i))+;
if(ttt>)
{
ans+=(ttt-)*;
if(abs(x1(i)-x1(j))>)ans++;
if(abs(x2(i)-x2(j))>)ans++;
}
else if(abs(x1(i)-x1(j))==||abs(x2(i)-x2(j))==)ans++;
}
else if(x2(j)==x1(i)-)//j左
{
int ttt=min(ty2(j),ty2(i))-max(ty1(j),ty1(i))+;
if(ttt>)
{
ans+=(ttt-)*;
if(abs(ty1(i)-ty1(j))>)ans++;
if(abs(ty2(i)-ty2(j))>)ans++;
}
}
else if(x1(j)==x2(i)+)//j右
{
int ttt=min(ty2(j),ty2(i))-max(ty1(j),ty1(i))+;
if(ttt>)
{
ans+=(ttt-)*;
if(abs(ty1(i)-ty1(j))>)ans++;
if(abs(ty2(i)-ty2(j))>)ans++;
}
}
else if(x1(j)>x2(i)&&ty1(j)>ty2(i))break;
}
}
printf("%lld\n",ans);
exit();
}

HZOJ 辣鸡(ljh)的更多相关文章

  1. 7.29 NOIP模拟测试10 辣鸡(ljh)+模板(ac)+大佬(kat)

    T1 辣鸡(ljh) 就是一道分类讨论的暴搜,外加一丢丢的减枝,然而我挂了,为啥呢,分类讨论变量名打错,大于小于号打反,能对才怪,写了sort为了调试就注释了,后来忘了解开,小减枝也没打.但是这道题做 ...

  2. [CSP-S模拟测试]:辣鸡(ljh) (暴力)

    题目描述 辣鸡$ljh\ NOI$之后就退役了,然后就滚去学文化课了.然而在上化学课的时候,数学和化学都不好的$ljh$却被一道简单题难住了,受到了大佬的嘲笑.题目描述是这样的:在一个二维平面上有一层 ...

  3. [NOIP模拟测试10]辣鸡(ljh) 题解

    首先计算块内贡献,很显然是$(x_2-x_1)*(y_2-y_1)*2$. 然后考虑矩形之间的贡献,sort一遍分类讨论$n^2$暴力即可. 注意考虑边界情况是否能多两个,以及角对角的情况. 另外,排 ...

  4. noip模拟6[辣鸡·模板·大佬·宝藏]

    这怕不是学长出的题吧 这题就很迷 这第一题吧,正解竟然是O(n2)的,我这是快气死了,考场上一直觉得aaaaa n2过不了过不了, 我就去枚举边了,然后调了两个小时,愣是没调出来,然后交了个暴力,就走 ...

  5. JVM 辣鸡回收

    垃圾回收算法 标记清除法 先标记出需要回收的对象,然后一次性回收.缺点:会产生内存碎片,并且效率也不高. 标记压缩法 先标记出需要回收的对象,然后让存活对象向一端移动,移动的过程中进行回收辣鸡.避免了 ...

  6. NOIP模拟测试10「大佬·辣鸡·模板」

    大佬 显然假期望 我奇思妙想出了一个式子$f[i]=f[i-1]+\sum\limits_{j=1}^{j<=m} C_{k \times j}^{k}\times w[j]$ 然后一想不对得容 ...

  7. bzoj2141排队(辣鸡但是好写的方法)

    题意很明确,也非常经典: 一个支持查询 区间中比k大的数的个数 并且支持单点修改的序列 ——因为题意可以转化为:查询这两个数中比后者大的个数.比后者小的个数.比前者大的个数.比前者小的个数(根据这4个 ...

  8. SA的一个辣鸡trick

    基础板子 namespace SA{ int x[400010],y[400010],SA[400010],rk[400010],ht[400010],t[400010]; int st[19][40 ...

  9. 辣鸡蒟蒻Klaier的一些计划

    需要熟练的东西:cdq分治,堆,树链剖分,tarjan及其它一些图论算法,网络流,kmp,字符串哈希,线段树主席树,树状数组,斜率优化dp 需要学的东西:lct,后缀数组,AC自动机,平衡树 球队收益 ...

随机推荐

  1. 这些Excel学会了,你做账的效率将大大提高

    这些Excel学会了,你做账的效率将大大提高 这些功能学会了,工作效率将大大提高. 1.excel的快速访问工具栏: 我的快速访问工具栏由左到右主要是"保存"."新建&q ...

  2. Hibernate: insert into xxx (name) values (?)但是数据库中没有数据

    学习hibernate 控制台提示 但数据库中没有任何数据被插入 同样的代码,参考例程中就有数据被插入 比较无解,删除部分代码,红框中的部分,运行一下,再贴回去,就好了

  3. ubuntu 12.4,搞定apt源

    http://wiki.ubuntu.org.cn/Template:12.04source deb http://cn.archive.ubuntu.com/ubuntu/ precise main ...

  4. Uva11384 Help is needed for Dexter

    Dexter is tired of Dee Dee. So he decided to keep Dee Dee busy in a game. The game he planned for he ...

  5. BZOJ4719[NOIP2016提高组Day1T2] 天天爱跑步

    #261. [NOIP2016]天天爱跑步 描述 提交 自定义测试 小C同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家 ...

  6. vue 报错解决:TypeError: Cannot read property '_t' of undefined"

    前端报错如下: [Vue warn]: Error in render: "TypeError: Cannot read property '_t' of undefined" 是 ...

  7. Javascript-正则表达式常用字符集及方法

    正则表达式修饰符(修饰符 可以在全局搜索中不区分大小写) i(ignoreCase)执行对大小写不敏感的匹配 g (global)     执行全局匹配(查找所有匹配而非在找到第一个匹配后停止) m( ...

  8. ML面试1000题系列(91-100)

    本文总结ML面试常见的问题集 转载来源:https://blog.csdn.net/v_july_v/article/details/78121924 91 简单说说RNN的原理?我们升学到高三准备高 ...

  9. hdu 1251 统计难题(trie树入门)

    统计难题 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131070/65535 K (Java/Others)Total Submi ...

  10. WPF学习(8)数据绑定 https://www.cnblogs.com/jellochen/p/3541197.html

    说到数据绑定,其实这并不是一个新的玩意儿.了解asp.net的朋友都知道,在asp.net中已经用到了这个概念,例如Repeater等的数据绑定.那么,在WPF中的数据绑定相比较传统的asp.net中 ...