论文阅读笔记(二十)【AAAI2019】:Spatial and Temporal Mutual Promotion for Video-Based Person Re-Identification
Introduction
(1)Motivation:
作者考虑到空间上的噪声可以通过时间信息进行弥补,其原因为:不同帧的相同区域可能是相似信息,当一帧的某个区域存在噪声或者缺失,可以用其它帧的相同区域进行弥补。
(2)Contribution:
① 不直接使用帧提取的特征信息,而是提出一个改进循环单元(refining recurrent unit,RRU),来修复缺失或噪声;
② 介绍一种时空线索集成模块(spatial-temporal clues integration module,STIM),来提取时空信息;
③ 提出多层训练目标来提高RRU和STIM的能力。
Method
(1)框架:

定义:
表示行人 i 的 K 个视频序列,采用 Inception-v3 (2016年Szegedy提出)作为特征提取模块的主干网络,通过CNN提取出的特征为
,再传入RRU模块得到改进特征 Si,k,最后传入 STIM模块僧改成最终的视频级特征表示
。
(2)改进循环单元(RRU):

使用
作为 g 模块的输入,来衡量两帧的样貌差异(我的理解:特征S相当于特征X弥补上缺失),使用
作为 g 的另一个输入,来衡量动作捕捉。
,其中
。
首先通过过渡层(transition layer),其包含256个filter 1*1的卷积层,得到
;
上层为空间感知模块,首先使用通道交叉平均池化获得每个空间位置的全局感知,再通过两个全连接层,得到:
,
,
;
下层为通道感知模块,首先使用空间平均池化来获得每个通道的全局感知,再通过一个全连接层,得到:
,
,
;
将两者进行乘法操作,再用sigmoid约束至[0, 1]之间,即:
,
。
最终特征输出:
,
Z 的每一个位置表示该位置特征的可信值。其值高,则表示该位置的特征有较高的质量,应当保留;其值低,则表示该位置应当被前帧特征所替补。(两帧差别小的地方直接用上一帧,差别大的地方用当前帧)
(3)时空线索集成模块(STIM):
STIM 包含了两个3D卷积模块和一个平均池化层,每个3D卷积模块包含了三个操作:3D卷积层(包含256个filter)+ 3D BN层 + ReLU层。第一个3D卷积模块的kernel size为 1*1*1,用来降低特征维度;第二个3D卷积模块的kernel size为3*3*3,用来捕捉行人的肢体移动,并输出特征:
。最后通过时空平均池化,得到最终特征表述:
,即:

(3)多层训练目标:
训练目标函数:
① 第一项为两个交叉熵损失,详情参照Szegedy提出的Inception-v3模型,该模型包含identity classifier 和 auxiliary classifier 两个分类器,作者对identify classifier的全连接层进行了修改,采用了Zhong提出的classifier模块,包含了512结点的全连接层、BN、ReLU、Dropout、FC、Softmax层。
② 第二项为视频级约束,采用Hermans等人提出的batch hard三元组损失,具体为:

③ 第三项为区域级约束,将特征S划分成行,获得行级特征(上述特征f忽略了不同区域的空间变化 ):

其中
为
的第 r 行,得到的区域特征向量为:
,
定义如下损失函数:

Experiments
(1)实验设置:
① 数据集:iLIDS-VID、PRID-2011、MARS;
② 参数设置:帧大小 299*299,N = 10,K = 2,T = 8,m = 0.4,dropout rate = 0.5,learning rate = 0.01,weight decay = 5 * 10^-4,momentum = 0.9
(2)实验结果:



论文阅读笔记(二十)【AAAI2019】:Spatial and Temporal Mutual Promotion for Video-Based Person Re-Identification的更多相关文章
- 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)
论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...
- 论文阅读笔记二十四:Rich feature hierarchies for accurate object detection and semantic segmentation Tech report(R-CNN CVPR2014)
论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进 ...
- 论文阅读笔记二十九:SSD: Single Shot MultiBox Detector(ECCV2016)
论文源址:https://arxiv.org/abs/1512.02325 tensorflow代码:https://github.com/balancap/SSD-Tensorflow 摘要 SSD ...
- 论文阅读笔记二十八:You Only Look Once: Unified,Real-Time Object Detection(YOLO v1 CVPR2015)
论文源址:https://arxiv.org/abs/1506.02640 tensorflow代码:https://github.com/nilboy/tensorflow-yolo 摘要 该文提出 ...
- 论文阅读笔记二十六:Fast R-CNN (ICCV2015)
论文源址:https://arxiv.org/abs/1504.08083 参考博客:https://blog.csdn.net/shenxiaolu1984/article/details/5103 ...
- 论文阅读笔记二十二:End-to-End Instance Segmentation with Recurrent Attention(CVPR2017)
论文源址:https://arxiv.org/abs/1605.09410 tensorflow 代码:https://github.com/renmengye/rec-attend-public 摘 ...
- 论文阅读笔记二十:LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation(CVPR2017)
源文网址:https://arxiv.org/abs/1707.03718 tensorflow代码:https://github.com/luofan18/linknet-tensorflow 基于 ...
- 论文阅读笔记(十)【CVPR2016】:Recurrent Convolutional Network for Video-based Person Re-Identification
Introduction 该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构(recurrent DNN architecture),通过使用Siamese网 ...
- 论文阅读笔记(十八)【ITIP2019】:Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification
论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① P ...
- 论文阅读笔记(十二)【CVPR2018】:Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning
Introduction (1)Motivation: 大量标记数据成本过高,采用半监督的方式只标注一部分的行人,且采用单样本学习,每个行人只标注一个数据. (2)Method: 对没有标记的数据生成 ...
随机推荐
- http请求中的 OPTIONS 多余请求消除,减少的案例
问题: 项目中遇到移动端发送同样的请求2次,仔细看了一下,有个是options报文. HTTP请求翻一倍,对服务器的性能有较大影响,造成nginx的无畏消耗,需要消除它. 解决思路: 1.上网查看了一 ...
- HDU_5692_dfs序+线段树
http://acm.hdu.edu.cn/showproblem.php?pid=5692 这道题真的是看了题解还搞了一天,把每条路径后序遍历按1-n重新标号,储存每个点在哪些路径中出现过(l和r数 ...
- JVM垃圾回收详解
通常,我们在写java程序的时候,似乎很少关注内存分配和垃圾回收的问题.因为,这部分工作,JVM已经帮我们自动实现了. 这样看起来,好像很美好,但是任何事情都有两面性.虽然JVM会自动的进行垃圾回收, ...
- Python常用库 - logging日志库
logging的简单介绍 用作记录日志,默认分为六种日志级别(括号为级别对应的数值) NOTSET(0) DEBUG(10) INFO(20) WARNING(30) ERROR(40) CRITIC ...
- Chrome恢复显示网址 https:// 和 www
文章来自我的博客: https://blog.ljyngup.com/archives/686.html/ Chrome这个新规弄得我也很蛋疼,每次一点输入框就突然突出来一下.后来在Hostloc论坛 ...
- PBFT算法java实现
PBFT 算法的java实现(上) 在这篇博客中,我会通过Java 去实现PBFT中结点的加入,以及认证.其中使用socket实现网络信息传输. 关于PBFT算法的一些介绍,大家可以去看一看网上的博客 ...
- ceph集群部署
最近在学习 kubernetes 过程中,想实现 pod 数据的持久化.在调研的过程中,发现 ceph 在最近几年发展火热,也有很多案例落地企业.在选型方面,个人更加倾向于社区火热的项目,Gluste ...
- 20200118--python学习第十一天
今日内容 函数小高级 lambda表达式 内置函数 内容回顾 1.函数基本结构 2.参数 形参 基本参数:def func(a1,a2):pass 默认值:def func(a1,a2=123):pa ...
- ASP.NET Core 借助 Helm 部署应用至K8S
前言 玩K8S也有一段时间了,借助云服务提供商的K8S控制台,已经可以很方便的快速部署应用至K8S.通过简单的点击,可以一次性帮忙创建K8S 对象:Deployment.Service.Ingress ...
- k8s系列---存储卷pv/pvc。configMap/secert
因为pod是有生命周期的,pod一重启,里面的数据就没了.所以我们需要数据持久化存储. 在k8s中,存储卷不属于容器,而是属于pod.也就是说同一个pod中的容器可以共享一个存储卷. 存储卷可以是宿主 ...