#include<stdio.h>
#include<string.h>
struct stack
{
int top;
int node[];
}s;
int n,map[][];
void dfs(int x)
{
int i,j;
s.top++;
s.node[s.top]=x;
for(i=;i<n;i++)
{
if(map[i][x])
{
map[i][x]=map[x][i]=;
dfs(i);
break;
}
}
}
void fleury(int start)
{
int i,j;
s.top=;s.node[s.top]=start;
while(s.top>=)
{
int flag=;
for(i=;i<n;i++)
{
if(map[s.node[s.top]][i])
{
flag=;break;
}
}
if(!flag)
{
printf("%d ",s.node[s.top]+);
s.top--;
}
else
{
s.top--;
dfs(s.node[s.top+]);
}
}
}
int main()
{
int i,j,m,dgree;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(map,,sizeof(map));
for(i=;i<m;i++)
{
int s,t;
scanf("%d%d",&s,&t);
map[s-][t-]=map[t-][s-]=;
}
int num=,start=;
for(i=;i<n;i++)
{
dgree=;
for(j=;j<n;j++)
{
if(map[i][j])
dgree++;
}
if(dgree%)
{
num++;
start=i;
}
}
if(num==||num==)
fleury(start);
else printf("NO\n");
}
return ;
}
/*
9 14
1 2
1 8
2 3
2 8
2 9
3 4
4 5
4 6
4 9
5 6
6 7
6 9
7 8
8 9
*/

fluery算法的更多相关文章

  1. UVA 10735 Euler Circuit 混合图的欧拉回路(最大流,fluery算法)

    题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制 ...

  2. HihoCoder1644 : 完美命名的烦恼([Offer收割]编程练习赛37)(有向图的一笔画问题||欧拉路)

    描述 程序员常常需要给变量命名.给函数命名.给项目命名.给团队命名…… 好的名字可以大大提高程序员的主观能动性,所以很多程序员在起名时都会陷入纠结和烦恼. 小Hi希望给新的项目起个完美的名字.首先小H ...

  3. CCF-CSP题解 201512-4 送货

    求字典序最小欧拉路. 似乎不能用\(Fluery\)算法(\(O(E^2)\)).\(Fluery\)算法的思路是:延申的边尽可能不是除去已走过边的图的桥(割).每走一步都要判断是否是割,应当会超时. ...

  4. 图论-欧拉图-欧拉回路-Euler-Fluery-Hierholzer-逐步插入回路法-DFS详解-并查集

    欧拉图性质: 1.无向连通图G是欧拉图,当且仅当G不含奇数度结点(G的所有结点度数为偶数): 2.无向连通图G含有欧拉通路,当且仅当G有零个或两个奇数度的结点: 3.有向连通图D是欧拉图,当且仅当该图 ...

  5. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

  6. 分布式系列文章——Paxos算法原理与推导

    Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资 ...

  7. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  8. 红黑树——算法导论(15)

    1. 什么是红黑树 (1) 简介     上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极 ...

  9. 散列表(hash table)——算法导论(13)

    1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列 ...

随机推荐

  1. Ubuntu 14.04 LTS Server 无法挂载光盘 启动initramfs等问题

    今天需要在戴尔R410服务器上装64位的Linux,师兄给了个14.04的server 64位镜像.一开始打算用U盘安装,用软碟通烧写镜像之后,在服务器端设置从U盘启动,但是安装到一半出现了光盘无法挂 ...

  2. 【软件使用】GitHub使用教程for VS2012

    一直以来都想使用Git来管理自己平时积累的小代码,就是除了工作之外的代码了.有时候自己搞个小代码,在公司写了,就要通过U盘或者网盘等等一系列工具进行Copy,然后回家才能继续在原来的基础上作业.Cop ...

  3. Android配置----adb工具的使用

    Adb(android debug bridge):android 调试桥,用于将本地的文件 push 到环境中,或者从手机环境中 pull 文件到本地. 一.ADB的主要功能: · 运行设备的she ...

  4. HTML5之应用缓存---manifest---缓存使用----HTML5的manifest缓存

    相信来查这一类问题的都是遇到问题或者是初学者吧! 没关系相信你认真看过之后就会知道明白的 这是HTML5新加的特性 HTML5 引入了应用程序缓存,这意味着 web 应用可进行缓存,并可在没有因特网连 ...

  5. 限制站点目录防止跨站的三种方案(使用open_basedir)

    nginx结合php的时候,可以使用open_basedir限制站点目录防止跨站具体实现方法有以下三种:注意:以下三种设置方法均需要PHP版本为5.3或者以上. 方法1)在Nginx配置文件中加入fa ...

  6. 堡垒机环境-jumpserver部署

    1:安装数据库 这里是提前安装,也可以不安装,在安装jumpserver主程序的时候,他会询问你是否安装 yum -y install ncurses-devel cmake echo 'export ...

  7. spring这么流行的原因是什么

    spring这么流行的原因是什么?对象与对象之间的依赖关系不再通过对象去创建对象了,而是通过配置文件来管理他们的依赖关系.这就是spring的依赖注入机制,这个注入关系在一个叫IOC的容器中管理.在这 ...

  8. 【转】【C#】【Thread】【Parallel】并行计算

    并行计算 沿用微软的写法,System.Threading.Tasks.Parallel类,提供对并行循环和区域的支持. 我们会用到的方法有For,ForEach,Invoke. Program.Da ...

  9. c# nullable类型有什么用

    可空类型,语法: ;            int? inully = 10; Nullable<int> inullx0 = null;            int? inully0 ...

  10. connect函数详解

    不得不说,客户端的connect函数和服务端的accept函数是一对好基友,如果客户端没有去connect, 那么服务端的accept会一直在那里傻傻地痴痴地等待,我们先来看看connect函数的原型 ...