题目描述
有以下几个问题:
1 给定正整数  求方程  的最小非负整数解。
2 给定正整数 求方程 的最小非负整数解。
3 给定正整数 求方程  在模  意义下解的数量。
4 给定正整数 求   的值。其中  是欧拉函数, 是莫比乌斯函数。
输入格式
输入文件共四行,按上述描述中四个问题的顺序,给出每个问题。
第一行三个正整数   表示第一个问题,保证
第二行三个正整数 表示第二个问题,保证  
第三行三个正整数  表示第三个问题,保证  为质数且  
第四行三个正整数 表示第四个问题。
输出格式
共四行每行一个整数,分别表示四个问题的答案。对于前两个问题,若问题无解则输出-1。对于第三个问题你只需输出解的数量。
样例数据
super.in
3 6 8
9 10 12
4 4 7
5 4 20

super.out
2
-1
2
4
数据范围
20% 的数据:
60% 的数据:
100% 的数据:
评分方式
对于每个测试点:
• 第一个问题正确得 2 分。
• 第二个问题正确得 3 分。
• 第三个问题正确得 3 分。

题解

第一问:将式子化成  , 拓展欧几里得即可。

第二问: BSGS大步小步算法解高次同余方程。

详情请见TonyFang博客:http://tonyfang.is-programmer.com/posts/178997.html

第三问:求出  的一个原根 ,可以求出 ,并设 , 则由费马小定理可知,解该方程等价于解  所以实际上它是前两个问题的组合应用。

第四问:Pollard Rho算法和Millar Rabin算法的应用。

【NOIP训练】【数论】超级计算机的更多相关文章

  1. noip级别数论?

    TAT快noip了才开始去接触数论(真心不敢学..)这里做一下整理吧(都是些定义之类的东西= =) 欧几里德:gcd(a,b)=gcd(b,a%b);具体证明见百科? 扩展欧几里德: 求a*x+b*y ...

  2. Noip 训练指南

    目录 Noip 训练指南 图论 数据结构 位运算 期望 题解 Noip 训练指南 目前完成 \(4 / 72\) 图论 [ ] 跳楼机 [ ] 墨墨的等式 [ ] 最优贸易 [ ] 泥泞的道路 [ ] ...

  3. 9.19[XJOI] NOIP训练37

    上午[XJOI] NOIP训练37 T1 同余方程 Problem description 已知一个整数a,素数p,求解 $x^{2}\equiv a(mod p) $ 是否有整数解 Solution ...

  4. 【NOIP训练】【规律+数论】欧拉函数的应用

    Problem 1 [题目大意] 给出 多组数据 ,给出  求出 . 题解 证明:  除了 以为均为偶数, 所以互质的个数成对. 由 得 . 所以对于每对的和为 , 共有 对 . 则 Problem ...

  5. 2018.12.31 NOIP训练 偶数个5(简单数论)

    传送门 对于出题人zxyoizxyoizxyoi先%\%%为敬题目需要龟速乘差评. 题意简述:5e55e55e5组数据,给出n,请你求出所有n位数中有偶数个5的有多少,n≤1e18n\le1e18n≤ ...

  6. 2018.10.15 NOIP训练 hyc的等比数列(数论+枚举)

    传送门 一道不错的枚举题. 显然桶排序之后瞎枚举一波. 考虑枚举首项和末项,假设首项除去一个最大的平方因子得到的结果为xxx. 那么末项一定等于xxx乘上一个平方数. 于是我们枚举首项,算出xxx然后 ...

  7. NOIP训练测试2(2017081502)

    唔,这是今天第二场训练测试. 上一轮不够难,现在来一波更简单的.[滑稽] 注意时间! 测试时间:3小时 题目一:Cantor表 题目二:回文数 题目三:拼数 题目四:进制位 题目五:邮票面值设计 都是 ...

  8. 2018.11.02 NOIP训练 停车场(线段树)

    传送门 这是一道困饶了我一年的题. 其实就是去年去NOIP提高组试水的时候考的模拟题 但当时我水平不够,跟ykykyk一起杠了一个下午都没调出来. 今天终于AAA了. 其实就是一个维护最长连续0101 ...

  9. 9.18[XJOI] NOIP训练36

    ***在休息了周末两天(好吧其实只有半天),又一次投入了学车的怀抱,重新窝在这个熟悉的机房 今日9.18(今天以后决定不写打卡了) 日常一日总结 一个昏昏欲睡的早晨 打了一套不知道是谁出的题目,空间限 ...

随机推荐

  1. 重建 windows 图标缓存

    执行命令: ie4uinit –show 好像可以吧?

  2. Servlet3.0学习总结——基于Servlet3.0的文件上传

    Servlet3.0学习总结(三)——基于Servlet3.0的文件上传 在Servlet2.5中,我们要实现文件上传功能时,一般都需要借助第三方开源组件,例如Apache的commons-fileu ...

  3. Flink 剖析

    1.概述 在如今数据爆炸的时代,企业的数据量与日俱增,大数据产品层出不穷.今天给大家分享一款产品—— Apache Flink,目前,已是 Apache 顶级项目之一.那么,接下来,笔者为大家介绍Fl ...

  4. Swift 正式开源, 包括 Swift 核心库和包管理器

    Swift 正式开源!Swift 团队很高兴宣布 Swift 开始开源新篇章.自从苹果发布 Swfit 编程语言,就成为了历史上发展最快的编程语言之一.Swift 通过设计使得软件编写更加快速更加安全 ...

  5. [Android界面] 这样的选择器怎么实现?? 充值选择

    1  充值的或年纪的 或  1 先讲例子 http://blog.csdn.net/lmj623565791/article/details/48393217: 本文出自:[张鸿洋的博客] 一.概述 ...

  6. [LeetCode] Number of Islands II

    Problem Description: A 2d grid map of m rows and n columns is initially filled with water. We may pe ...

  7. Populating Next Right Pointers in Each Node II--leetcode难题讲解系列

    Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *nex ...

  8. 在seajs中使用require加载静态文件的问题

    注意,在seajs中使用require加载静态文件时,必须使用常量,不能用变量.如果一定要用变量,请使用require.async var html = require("view/sys/ ...

  9. google全球地址大全

    https://github.com/justjavac/Google-IPs http://www.aol.com/依托于google的一个搜索,通过这个搜索

  10. AssetBundle系列——资源的加载、简易的资源管理器

    每个需要进行资源管理的类都继承自IAssetManager,该类维护它所使用到的所有资源的一个资源列表.并且每个资源管理类可以重写其资源引用接口和解引用接口. 每个管理器有自己的管理策略,比如Scen ...