luogu P1516 青蛙的约会(线性同余方程扩展欧几里德)
题意
题解
做了这道题,发现扩欧快忘了。
根据题意可以很快地列出线性同余方程。
设跳了k次
x+mkΞy+nk(mod l)
(m-n)kΞ-(x-y)(mod l)
然后化一下
(m-n)k+(x-y)Ξ0(mod l)
也就是前面一坨是l的倍数
不妨设
(m-n)k+(x-y)=-tl
(m-n)k+tl=-(x-y)
我们要求的就是保证t<=0(因为我们设的-t倍的l,所以t<=0),k>=0时k的最小值
发现这是一个不定方程
根据裴蜀定理(这个定理搜狗输入法上没有)
当-(x-y)是gcd((m-n),t)的倍数时是有解的。(等式两边都乘-(x-y)/gcd就行了)且(m-n)k+tl=gcd((m-n),t)一定有整数解
所以我们用扩欧算出(m-n)k+tl=gcd((m-n),t)的一组特解和gcd
然后通过判断-(x-y)是不是gcd((m-n),t)的倍数判断有没有解。
假如有解我们就先保证(m-n)为正数根据k的通解公式k=-(x-y)/gcd*k0+h*l/gcd(h为整数)
然后求出最小的正数k就行了
然后这样做似乎没有保证t<=0
其实保证了
考虑通项公式。其实那个k0的系数-(x-y)/gcd
是因为我们要把(m-n)k+tl=gcd((m-n),t)化为-(x-y)/gcd(m-n)k+-(x-y)/gcdtl=-(x-y)给等式两边乘的
这样保证现在-(x-y)/gcd(m-n)k是大于等于-(x-y)的(当-(x-y)为正数)这样t<=0没什么问题。
当当-(x-y)为负数时我们发现-(x-y)/gcd(m-n)k小于等于-(x-y)此时t也变号了所以要求t>=0也没问题。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
long long x,y,n,m,l,xx,yy;
long long exgcd(long long a,long long b,long long &x,long long &y){
if(b==){
x=;
return a;
}
long long c=exgcd(b,a%b,x,y);
long long z=x;
x=y;y=z-(a/b)*y;
return c;
}
int main(){
scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l);
long long a=m-n;long long b=y-x;
if(a<){
a=-a;
b=-b;
}
long long gcd=exgcd(a,l,xx,yy);
if(b%gcd!=){
printf("Impossible");
}
else printf("%lld",(xx*(b/gcd)%(l/gcd)+(l/gcd))%(l/gcd));
return ;
}
luogu P1516 青蛙的约会(线性同余方程扩展欧几里德)的更多相关文章
- 解题报告:luogu P1516 青蛙的约会
题目链接:P1516 青蛙的约会 考察拓欧与推式子\(qwq\). 题意翻译? 求满足 \[\begin{cases}md+x\equiv t\pmod{l}\\nd+y\equiv t\pmod{l ...
- POJ 1061 BZOJ 1477 Luogu P1516 青蛙的约会 (扩展欧几里得算法)
手动博客搬家: 本文发表于20180226 23:35:26, 原地址https://blog.csdn.net/suncongbo/article/details/79382991 题目链接: (p ...
- [Luogu P1516]青蛙的约会
按照题意,显然可以列出同余方程,k即为所求天数,再将其化为不定方程 ,那么对这个方程用扩展欧几里德算法即可得出k,q的一组解,但是方程有解的充要条件是(m – n) 和L不同时为零并且x – y是m ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- 青蛙的约会---poj1061(扩展欧几里德)
题目链接:http://poj.org/problem?id=1061 就是找到满足 (X+mt)-(Y+nt) = Lk 的 t 和 k 即可 上式可化简为 (n-m)t + Lk = X-Y;满足 ...
- 洛谷 P1516 青蛙的约会 解题报告
P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...
- 洛谷——P1516 青蛙的约会
P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...
- P1516 青蛙的约会
P1516 青蛙的约会x+mt-p1L=y+nt-p2L(m-n)t+L(p2-p1)=y-x令p=p2-p1(m-n)t+Lp=y-x然后套扩欧就完事了 #include<iostream&g ...
- P1516 青蛙的约会和P2421 [NOI2002]荒岛野人
洛谷 P1516 青蛙的约会 . 算是手推了一次数论题,以前做的都是看题解,虽然这题很水而且还交了5次才过... 求解方程\(x+am\equiv y+an \pmod l\)中,\(a\)的最小整数 ...
随机推荐
- LeetCode Golang 6. Z 字形变换
6. Z 字形变换 将一个给定字符串根据给定的行数,以从上往下.从左到右进行 Z 字形排列. 比如输入字符串为 "LEETCODEISHIRING" 行数为 3 时,排列如下: L ...
- hdu 1080 dp(最长公共子序列变形)
题意: 输入俩个字符串,怎样变换使其所有字符对和最大.(字符只有'A','C','G','T','-') 其中每对字符对应的值如下: 怎样配使和最大呢. 比如: A G T G A T G - G ...
- 转:用java调用oracle存储过程总结(比较好理解)
这段时间开始学习写存储过程,主要原因还是因为工作需要吧,本来以为很简单的,但几经挫折,豪气消磨殆尽,但总算搞通了,为了避免后来者少走弯路,特记述与此,同时亦对自己进行鼓励. 一:无返回值的存储过程 存 ...
- Linux系统下安装 rpm 软件和源代码 软件包
RPM 安装方式 RPM是一个包安装管理软件,我们可以使用这个工具安装 .rpm 类型的软件.Linux的rpm包很多都能在光盘的Packages 包中找得到.首先挂载一下光盘,查看Packages中 ...
- ansible 主机清单 /etc/ansible/hosts
主机清单 [webservers] ansible01 ansible02 ansible03 ansible04 [root@ftp:/root] > ansible webservers - ...
- 解决utf8' codec can't decode byte 0xe5 in position 0: unexpected end of data
使用unicode对象的话,除了这样使用u标记,还可以使用unicode类以及字符串的encode和decode方法. unicode类的构造函数接受一个字符串参数和一个编码参数,将字符串封装为一个u ...
- 获取ip,判断用户所在城市
PHP获取IP地址 这个比较简单了,利用PHP自带函数就可以了,PHP中文手册看一下,都有现成的例子,就不过多说明了,直接上代码,A段: <? //PHP获取当前用户IP地址方法 $xp_Use ...
- Sublime 插件Pylinter could not automatically determined the path to lint.py
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50618630 安装Sublime Te ...
- POJ——T1679 The Unique MST
http://poj.org/problem?id=1679 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 30120 ...
- linux内核模块笔记
主题: 1. 嵌入式基础知识 2. linux内核介绍 3. 内核的编译和安装(x86) 4. 第一个模块 5. 模块的相关工具 6. 模块的符号导出 7. 模块的參数 1.看linux/module ...