bzoj 3571: [Hnoi2014]画框
Description
小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框。为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和。对于第 幅画与第 个画框的配对,小T都给出了这个配对的平凡度Aij 与违和度Bij 。整个搭配方案的总体不和谐度为每对画与画框平凡度之和与每对画与画框违和度的乘积。具体来说,设搭配方案中第i幅画与第Pi个画框配对,则总体不和谐度为
小T希望知道通过搭配能得到的最小的总体不和谐度是多少。
Input
输入文件第 行是一个正整数T ,表示数据组数,接下来是T组数据。
对于每组数据,第 行是一个正整数N,表示有N对画和画框。
第2到第N+1行,每行有N个非负整数,第i+1 行第j个数表示Aij 。
第N+2到第2*N+1行,每行有N个非负整数,第i+N+1 行第j个数表示Bij 。
Output
包含T行,每行一个整数,表示最小的总体不和谐度
Sample Input
3
4 3 2
2 3 4
3 2 1
2 3 2
2 2 4
1 1 3
Sample Output
HINT
第1幅画搭配第3个画框,第2幅画搭配第1个画框,第3 幅画搭配第2个画框,则总体不和谐度为30
N<=70,T<=3,Aij<=200,Bij<=200
Source
如果知道最小乘积生成树的话,那这题就是真的裸得不能再裸了;
具体操作是这样的,把一个最大匹配的∑ai看成横坐标,∑bi看成纵坐标,那么就是就对应着平面上的点(x,y),答案就是x*y;
我们发现答案一定在下凸壳上,然后我们考虑如何求解,与二维乘积最小生成树是一样的;
这里发一个最小乘积生成树的链接,说得特别好,主要是有图:http://www.cnblogs.com/autsky-jadek/p/3959446.html
具体思想就是确定一条直线,然后在左下方找一个距离最远的点,找这个点就是找三角形面积最大的点,这个就是把叉积的式子展开,然后用费用流找到那个点,
然后往下递归,直到左下角没有点,这个用叉积面积<=0判;
//MADE BY QT666
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=20050;
const int Inf=2147483647;
struct Point{
int x,y;
};
int a[100][100],b[100][100],S,T,n,ans,tmp,cnt;
struct data{
int head[N],to[N],nxt[N],s[N],cc[N],in[N],fa[N],vx[N],vy[N],q[N*10],dis[N],cost;
void Addedge(int x,int y,int z,int u,int X,int Y) {
to[++cnt]=y,s[cnt]=z,cc[cnt]=u,nxt[cnt]=head[x],head[x]=cnt,vx[cnt]=X,vy[cnt]=Y;
}
void lnk(int x,int y,int z,int u,int X,int Y) {
Addedge(x,y,z,u,X,Y),Addedge(y,x,0,-u,-X,-Y);
}
bool spfa(Point &a) {
for(int i=S; i<=T; i++) dis[i]=Inf,in[i]=0;
int t=0,sum=1;
q[0]=S,in[S]=1,dis[S]=0;
while(t<sum) {
int x=q[t++];in[x]=0;
for(int i=head[x];i;i=nxt[i]) {
int y=to[i];
if(s[i]&&dis[y]>dis[x]+cc[i]) {
dis[y]=dis[x]+cc[i];fa[y]=i;
if(!in[y]) in[y]=1,q[sum++]=y;
}
}
}
if(dis[T]==Inf) return 0;
for(int i=fa[T];i;i=fa[to[i^1]]){
a.x+=vx[i];a.y+=vy[i];
s[i]--,s[i^1]++;
}
cost+=dis[T];
return 1;
}
Point Mincost() {Point c=(Point){0,0};while(spfa(c));return c;;}
void build(int X,int Y){
memset(head,0,sizeof(head));cnt=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
lnk(i,j+n,1,X*a[i][j]+Y*b[i][j],a[i][j],b[i][j]);
}
lnk(S,i,1,0,0,0);lnk(i+n,T,1,0,0,0);
}
}
}Gragh;
int Cross(Point a,Point b,Point c){
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
void solve(Point a,Point b){
Gragh.build(a.y-b.y,b.x-a.x);Point C=Gragh.Mincost();
ans=min(ans,C.x*C.y);
if(Cross(b,a,C)<=0) return;
solve(a,C);solve(C,b);
}
int main(){
freopen("frame.in","r",stdin);
freopen("frame.out","w",stdout);
int t;scanf("%d",&t);
while(t--){
scanf("%d",&n);S=0,T=2*n+1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) scanf("%d",&a[i][j]);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) scanf("%d",&b[i][j]);
}
Gragh.build(1,0);
Point A=Gragh.Mincost();
Gragh.build(0,1);
Point B=Gragh.Mincost();
ans=Inf;ans=min(ans,min(A.x*A.y,B.x*B.y));
solve(A,B);printf("%d\n",ans);
}
return 0;
}
bzoj 3571: [Hnoi2014]画框的更多相关文章
- BZOJ 3571 [Hnoi2014]画框(最小乘积完美匹配)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3571 [题目大意] 给出一张二分图,每条边上有a,b两个值,求完美匹配, 使得suma ...
- [BZOJ 3571] 画框
Link: BZOJ 3571 传送门 Solution: 和 BZOJ2395 的建模完全相同,(BZOJ2395 题解传送门) 仅仅是将其中的基础问题由最小生成树改成了二分图最大完美匹配 只要将原 ...
- BZOJ 3572: [Hnoi2014]世界树
BZOJ 3572: [Hnoi2014]世界树 标签(空格分隔): OI-BZOJ OI-虚数 OI-树形dp OI-倍增 Time Limit: 20 Sec Memory Limit: 512 ...
- 【LG3236】[HNOI2014]画框
[LG3236][HNOI2014]画框 题面 洛谷 题解 和这题一模一样. 将最小生成树换成\(KM\)即可. 关于复杂度,因为决策点肯定在凸包上,且\(n\)凸包的期望点数为\(\sqrt {\l ...
- BZOJ 3571 画框 KM算法 最小乘积最大权匹配
题意 有n个画框和n幅画.若第i幅画和第j个画框配对,则有平凡度Aij和违和度Bij,一种配对方案的总体不和谐度为∑Aij*∑Bij.求通过搭配能得到的最小不和谐度是多少. n <= 70. 分 ...
- BZOJ3571 & 洛谷3236:[HNOI2014]画框——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3571 https://www.luogu.org/problemnew/show/P3236 小T ...
- bzoj 3572: [Hnoi2014]世界树 虚树 && AC500
3572: [Hnoi2014]世界树 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 520 Solved: 300[Submit][Status] ...
- bzoj 3572 [Hnoi2014]世界树(虚树+DP)
3572: [Hnoi2014]世界树 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 645 Solved: 362[Submit][Status] ...
- bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理
3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1929 Solved: 686[Submit][Status ...
随机推荐
- poj2485 highwaysC语言编写
/*HighwaysTime Limit: 1000MSMemory Limit: 65536KTotal Submissions: 33595Accepted: 15194DescriptionTh ...
- Servlet之初始化参数和传递数据(ServletConfig,ServletContext )
ServletConfig 容器初始化一个Servlet的时候,会为这个Servlet建一个唯一的Servletconfig的对象(Servlet的配置对象) 容器会从部署的描述文件(web.xml) ...
- Innodb中的锁
Innodb中的锁 共享锁和排它锁(Shared and Exclusive Locks)共享锁和排它锁是行级锁,有两种类型的行级锁 共享锁(s lock)允许持有锁的事务对行进行读取操作 排它锁(x ...
- Python中的列表生成器,迭代器的理解
首先,思考一个问题,比如,我们想生成0-100的列表,我们怎么做? 当然,可以写成 list1=[1,2,3...,100] 可以看出,这种方法不适合生成长的列表,那么Python中就可以利用已有的列 ...
- Swarm 如何存储数据?- 每天5分钟玩转 Docker 容器技术(103)
service 的容器副本会 scale up/down,会 failover,会在不同的主机上创建和销毁,这就引出一个问题,如果 service 有要管理的数据,那么这些数据应该如何存放呢? 选项一 ...
- ML笔记:Gradient Descent
Review: Gradient Descent Tip 1: Tuning your learning rates eta恰好,可以走到局部最小值点; eta太小,走得太慢,也可以走到局部最小值点; ...
- ASP.NET没有魔法——ASP.NET MVC使用Oauth2.0实现身份验证
随着软件的不断发展,出现了更多的身份验证使用场景,除了典型的服务器与客户端之间的身份验证外还有,如服务与服务之间的(如微服务架构).服务器与多种客户端的(如PC.移动.Web等),甚至还有需要以服务的 ...
- day5、文件乱码怎么解决
1.1 Linux下,如何将一个乱码的文件进行重命名 方法一: 命令格式:mv $(ls |egrep "[^a-zA-Z0-9.-]") tandao.tx [root@nb ...
- UILabel 的使用
直接上代码: /* UILabel 使用 */ UILabel *aLable = [[UILabel alloc] initWithFrame:self.window.bounds]; aLable ...
- android:自己定义组合控件Weight(高仿猫眼底部菜单条)
在我们实际开发其中.会碰见一些布局结构类似或者同样的界面.比如应用的设置界面.tabbutton界面等. 这时候.对于刚開始学习的人来说,xml里面一个个绘制出来也许是最初的想法.可能随着经验的积累, ...