Description

小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框。为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和。对于第 幅画与第 个画框的配对,小T都给出了这个配对的平凡度Aij 与违和度Bij 。整个搭配方案的总体不和谐度为每对画与画框平凡度之和与每对画与画框违和度的乘积。具体来说,设搭配方案中第i幅画与第Pi个画框配对,则总体不和谐度为

小T希望知道通过搭配能得到的最小的总体不和谐度是多少。

Input

输入文件第 行是一个正整数T ,表示数据组数,接下来是T组数据。
对于每组数据,第 行是一个正整数N,表示有N对画和画框。
第2到第N+1行,每行有N个非负整数,第i+1 行第j个数表示Aij 。
第N+2到第2*N+1行,每行有N个非负整数,第i+N+1 行第j个数表示Bij 。

Output

包含T行,每行一个整数,表示最小的总体不和谐度

Sample Input

1
3
4 3 2
2 3 4
3 2 1
2 3 2
2 2 4
1 1 3

Sample Output

30

HINT

第1幅画搭配第3个画框,第2幅画搭配第1个画框,第3 幅画搭配第2个画框,则总体不和谐度为30

N<=70,T<=3,Aij<=200,Bij<=200

Source

如果知道最小乘积生成树的话,那这题就是真的裸得不能再裸了;

具体操作是这样的,把一个最大匹配的∑ai看成横坐标,∑bi看成纵坐标,那么就是就对应着平面上的点(x,y),答案就是x*y;

我们发现答案一定在下凸壳上,然后我们考虑如何求解,与二维乘积最小生成树是一样的;

这里发一个最小乘积生成树的链接,说得特别好,主要是有图:http://www.cnblogs.com/autsky-jadek/p/3959446.html

具体思想就是确定一条直线,然后在左下方找一个距离最远的点,找这个点就是找三角形面积最大的点,这个就是把叉积的式子展开,然后用费用流找到那个点,

然后往下递归,直到左下角没有点,这个用叉积面积<=0判;

//MADE BY QT666
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=20050;
const int Inf=2147483647;
struct Point{
int x,y;
};
int a[100][100],b[100][100],S,T,n,ans,tmp,cnt;
struct data{
int head[N],to[N],nxt[N],s[N],cc[N],in[N],fa[N],vx[N],vy[N],q[N*10],dis[N],cost;
void Addedge(int x,int y,int z,int u,int X,int Y) {
to[++cnt]=y,s[cnt]=z,cc[cnt]=u,nxt[cnt]=head[x],head[x]=cnt,vx[cnt]=X,vy[cnt]=Y;
}
void lnk(int x,int y,int z,int u,int X,int Y) {
Addedge(x,y,z,u,X,Y),Addedge(y,x,0,-u,-X,-Y);
}
bool spfa(Point &a) {
for(int i=S; i<=T; i++) dis[i]=Inf,in[i]=0;
int t=0,sum=1;
q[0]=S,in[S]=1,dis[S]=0;
while(t<sum) {
int x=q[t++];in[x]=0;
for(int i=head[x];i;i=nxt[i]) {
int y=to[i];
if(s[i]&&dis[y]>dis[x]+cc[i]) {
dis[y]=dis[x]+cc[i];fa[y]=i;
if(!in[y]) in[y]=1,q[sum++]=y;
}
}
}
if(dis[T]==Inf) return 0;
for(int i=fa[T];i;i=fa[to[i^1]]){
a.x+=vx[i];a.y+=vy[i];
s[i]--,s[i^1]++;
}
cost+=dis[T];
return 1;
}
Point Mincost() {Point c=(Point){0,0};while(spfa(c));return c;;}
void build(int X,int Y){
memset(head,0,sizeof(head));cnt=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
lnk(i,j+n,1,X*a[i][j]+Y*b[i][j],a[i][j],b[i][j]);
}
lnk(S,i,1,0,0,0);lnk(i+n,T,1,0,0,0);
}
}
}Gragh;
int Cross(Point a,Point b,Point c){
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
void solve(Point a,Point b){
Gragh.build(a.y-b.y,b.x-a.x);Point C=Gragh.Mincost();
ans=min(ans,C.x*C.y);
if(Cross(b,a,C)<=0) return;
solve(a,C);solve(C,b);
}
int main(){
freopen("frame.in","r",stdin);
freopen("frame.out","w",stdout);
int t;scanf("%d",&t);
while(t--){
scanf("%d",&n);S=0,T=2*n+1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) scanf("%d",&a[i][j]);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) scanf("%d",&b[i][j]);
}
Gragh.build(1,0);
Point A=Gragh.Mincost();
Gragh.build(0,1);
Point B=Gragh.Mincost();
ans=Inf;ans=min(ans,min(A.x*A.y,B.x*B.y));
solve(A,B);printf("%d\n",ans);
}
return 0;
}
 

bzoj 3571: [Hnoi2014]画框的更多相关文章

  1. BZOJ 3571 [Hnoi2014]画框(最小乘积完美匹配)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3571 [题目大意] 给出一张二分图,每条边上有a,b两个值,求完美匹配, 使得suma ...

  2. [BZOJ 3571] 画框

    Link: BZOJ 3571 传送门 Solution: 和 BZOJ2395 的建模完全相同,(BZOJ2395 题解传送门) 仅仅是将其中的基础问题由最小生成树改成了二分图最大完美匹配 只要将原 ...

  3. BZOJ 3572: [Hnoi2014]世界树

    BZOJ 3572: [Hnoi2014]世界树 标签(空格分隔): OI-BZOJ OI-虚数 OI-树形dp OI-倍增 Time Limit: 20 Sec Memory Limit: 512 ...

  4. 【LG3236】[HNOI2014]画框

    [LG3236][HNOI2014]画框 题面 洛谷 题解 和这题一模一样. 将最小生成树换成\(KM\)即可. 关于复杂度,因为决策点肯定在凸包上,且\(n\)凸包的期望点数为\(\sqrt {\l ...

  5. BZOJ 3571 画框 KM算法 最小乘积最大权匹配

    题意 有n个画框和n幅画.若第i幅画和第j个画框配对,则有平凡度Aij和违和度Bij,一种配对方案的总体不和谐度为∑Aij*∑Bij.求通过搭配能得到的最小不和谐度是多少. n <= 70. 分 ...

  6. BZOJ3571 & 洛谷3236:[HNOI2014]画框——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3571 https://www.luogu.org/problemnew/show/P3236 小T ...

  7. bzoj 3572: [Hnoi2014]世界树 虚树 && AC500

    3572: [Hnoi2014]世界树 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 520  Solved: 300[Submit][Status] ...

  8. bzoj 3572 [Hnoi2014]世界树(虚树+DP)

    3572: [Hnoi2014]世界树 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 645  Solved: 362[Submit][Status] ...

  9. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

随机推荐

  1. 十五、Hadoop学习笔记————Zookeeper的环境搭建

    linux中/opt一般用来存放应用/var目录一般用来存放日志 sample为样例文件,复制一份zoo.cfg文件 配置zoo文件,id为服务器id(整数),host为服务器的ip地址,第一个por ...

  2. Python资料汇总(建议收藏)

    整理汇总,内容包括长期必备.入门教程.练手项目.学习视频. 一.长期必备. 1. StackOverflow,是疑难解答.bug排除必备网站,任何编程问题请第一时间到此网站查找. https://st ...

  3. DIN(Deep Interest Network of CTR) [Paper笔记]

    背景 经典MLP不能充分利用结构化数据,本文提出的DIN可以(1)使用兴趣分布代表用户多样化的兴趣(不同用户对不同商品有兴趣)(2)与attention机制一样,根据ad局部激活用户兴趣相关的兴趣(用 ...

  4. 项目实战11—企业级nosql数据库应用与实战-redis的主从和集群

    企业级nosql数据库应用与实战-redis 环境背景:随着互联网2.0时代的发展,越来越多的公司更加注重用户体验和互动,这些公司的平台上会出现越来越多方便用户操作和选择的新功能,如优惠券发放.抢红包 ...

  5. swiper3插件无缝滚动配置

    <html> <head> <link rel="stylesheet" href="https://cdn.bootcss.com/Swi ...

  6. appium测试准备记录

    一 获取应用程序包名(手机中不安装apk) windows 环境下: aapt工具 使用aapt工具,适合给程序自动获取apk的相关信息. //aapt 是sdk自带的一个工具,在SDK/buildt ...

  7. 计算器的单元测试dome

    通过上一篇文章,Appium环境已经搭建好了,下面我们通过Python脚本来测试原生的计算器程序 --------------------------------------------------- ...

  8. [CSS 混合模式]——mix-blend-mode/background-blend-mode简介

    mix-blend-mode/background-blend-mode CSS3真是有很多的神奇的地方,这个两个元素你知道吗? 这是张大大拿过来的图,关于混合模式,借图一用. mix-blend-m ...

  9. Atcoder R84 D Small Multiple

    题意:给定一个正整数K,求K的倍数中,各位上的数字之和最小是多少? 思路非常巧妙,对于一个数,我们有定义两种改变方式: 1.加1,则数字之和+1(9的情况另行考虑) 2.乘10,数字之和不变 对于末位 ...

  10. CS Round#49 C Max Substring

    Max Substring Time limit: 1000 msMemory limit: 256 MB   You are given a string S. Find a string T th ...