Codeforces_776E: The Holmes Children (数论 欧拉函数)
先看题目中给的函数f(n)和g(n)
对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n)
证明f(n)=phi(n)
设有命题 对任意自然数x满足x<n,gcd(x,n)=1等价于gcd(x,y)=1 成立,则该式显然成立,下面证明这个命题。
假设gcd(x,y)=1时,gcd(x,n)=k!=1,则n=n'k,x=x'k,gcd(x,y)=gcd(x,n-x)=gcd(x'k,(n'-x')k)=k,与假设gcd(x,y)=1不符,故gcd(x,y)=1时,gcd(x,n)=1。同理可证gcd(x,n)=1时,gcd(x,y)=1。
综上,f(n)=phi(n)
对于g(n),
,这个本人就不在博客里献丑了,推荐找本专门讲数论的书看下,估计都会有,这个可以当成是结论用,即 n的所有因数的欧拉函数之和等于n本身
解决了函数f(n)和g(n)的意义,剩下的就好解多了
时间上,由于连续进行两次n=phi(n)的运算至少可以将n减小为原来的一半,故肯定是不会T啦
#include<bits/stdc++.h>
using namespace std;
typedef long long LL; //单独求解单个phi(x)
LL Eular(LL n)
{
LL ret=n;
for(LL i=; i*i<= n; i++)
if(n%i==)
{
ret-=ret/i;
while(n%i==) n/= i;
}
if(n>) ret-=ret/n;
return ret;
} LL n,k; int main()
{
while(cin>>n>>k)
{
k=(k+)/;
while(k-- && n>)
n=Eular(n);
cout<<n%<<endl;
}
}
Codeforces_776E: The Holmes Children (数论 欧拉函数)的更多相关文章
- 数论-欧拉函数-LightOJ - 1370
我是知道φ(n)=n-1,n为质数 的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...
- 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...
- Codeforces 776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- 数论 - 欧拉函数模板题 --- poj 2407 : Relatives
Relatives Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11372 Accepted: 5544 Descri ...
- 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points
Visible Lattice Points Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5636 Accepted: ...
- HDU1695-GCD(数论-欧拉函数-容斥)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 【数论·欧拉函数】SDOI2008仪仗队
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如右图 ...
- 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法
http://www.lydsy.com/JudgeOnline/problem.php?id=2190 裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...
随机推荐
- Java IO流之文件流
一.文件流分类 二.FileInputStream 三.FileOutputStream 四.FileReader 五.FileWriter 六.文件流应用 1,复制或剪切文件 2,读取文件信息 应用 ...
- 如何编写Spring-Boot自动配置
摘要 本文主要介绍如何把一个spring的项目(特别是一些公共工具类项目),基于spring boot的自动配置的思想封装起来,使其他Spring-Boot项目引入后能够进行快速配置. AutoCon ...
- 软件raid 5
软件raid 5的实现 RAID 5 是一种存储性能.数据安全和存储成本兼顾的存储解决方案. RAID 5可以理解为是RAID 0和RAID 1的折中方案.RAID 5可以为系统提供数据安全保障,但保 ...
- lucene全文搜索之三:生成索引字段,创建索引文档(给索引字段加权)基于lucene5.5.3
前言:上一章中我们已经实现了索引器的创建,但是我们没有索引文档,本章将会讲解如何生成字段.创建索引文档,给字段加权以及保存文档到索引器目录 luncene5.5.3集合jar包下载地址:http:// ...
- openjdk7之编译和debug
大家也可以看我的博客: openjdk7之编译和debug,这里格式更好. 为了更好的学习JDK.HotSpot等源码,需要能debug JDK.HotSpot等源码.本文主要讲述,怎么编译open ...
- HTML5 客户端存储数据的两种方式
HTML5 提供了两种在客户端存储数据的新方法: localStorage - 没有时间限制的数据存储 sessionStorage - 针对一个 session 的数据存储 之前,这些都是由 coo ...
- ThinkPHP 前台视图实现类似于Yii的自动验证
ThinkPHP model类其实自带这个功能 可以写一个基础类继承Model 模型层代码: <?php namespace Manager\Model; use Think\Model; cl ...
- Scrapyd部署爬虫
Scrapyd部署爬虫 准备工作 安装scrapyd: pip install scrapyd 安装scrapyd-client : pip install scrapyd-client 安装curl ...
- 详解 RAC 中各种IP和监听的意义
一.SCAN 概念 SCAN(Single Client Access Name)是 Oracle从11g R2开始推出的,客户端可以通过 SCAN 特性负载均衡地连接到 RAC数据库 SCAN 最明 ...
- oracle sql语句跟踪及性能分析工具实现
在网上找了一大圈,没找着合适的工具来跟踪oracle一段时间的sql. 我们的场景是打算自动化跑遍所有场景(rft)+fiddler跟踪请求+后端跟踪sql,根据结果去分析慢的请求和sql,本来awr ...