k-means算法概述
算法过程:
- 随机选取K个种子点
- 求所有点到种子点的距离,将点纳入距离最近的种子点群
- 所有点均被纳入群内后,将种子点移动到种子群中心
- 重复上述2、3过程,直至种子点没有移动
优缺点:
- 优点:容易实现
- 缺点:可能收敛到局部最小值,在大规模数据上收敛较慢
思考:
- k值如何确定?
- ISODATA算法针对这个问题进行了改进:当属于某个类别的样本数过少时把这个类别去除,当属于某个类别的样本数过多、分散程度较大时把这个类别分为两个子类别(类的自动合并和分裂)
- Elbow Method:通过绘制K-means代价函数与聚类数目K的关系图,选取直线拐点处的K值作为最佳的聚类中心数目
- 从实际问题出发,人工指定比较合理的K值,通过多次随机初始化聚类中心选取比较满意的结果
- 初始随机种子如何确定
- K-means++选取K个聚类中心的思想:假设已经选取了n个初始聚类中心(0<n<K),则在选取第n+1个聚类中心时:距离当前n个聚类中心越远的点会有更高的概率被选为第n+1个聚类中心。在选取第一个聚类中心(n=1)时同样通过随机的方法(聚类中心互相离得越远越好)
- 度量方式
- 传统K-means采用欧式距离进行样本间的相似度度量,显然并不是所有的数据集都适用于这种度量方式。kernel k-means参照支持向量机中核函数的思想,将所有样本映射到另外一个特征空间中再进行聚类,就有可能改善聚类效果
代码:
地址:https://github.com/AaronX121/Clustering,使用方式非常简单,目前支持三种形式的输入,分别对应着上面的三种算法:
- [centroid, result] = Clustering(data, ‘kmeans’, k , iteration);
- [centroid, result] = Clustering(data, ‘kmeans++’, k , iteration);
- [centroid, result] = Clustering(data, ‘isodata’, desired_k , iteration, minimum_n, maximum_variance, minimum_d);
其中的输入data是一个矩阵,每一行代表数据集中的一个样本。其他输入的意义与上面的算法描述中一一对应。输出的centroid是聚类中心的位置,result是每个样本所对应的类别索引。
应用:
k-means不仅局限于坐标点的计算,现实世界里的物体属性只要能抽象成向量,都可以用k-means来归类
上述论述摘自:http://www.cnblogs.com/yixuan-xu/p/6272208.html
k-means算法概述的更多相关文章
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- K-means算法
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢? ...
- k-近邻算法概述
2.1 k-近邻算法概述 k-近邻算法采用测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定. 确定:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型. 工 ...
- 机器学习(Machine Learning)算法总结-K临近算法
一.算法详解 1.什么是K临近算法 Cover 和 Hart在1968年提出了最初的临近算法 属于分类(classification)算法 邻近算法,或者说K最近邻(kNN,k-NearestNeig ...
- 《机器学习实战》-k近邻算法
目录 K-近邻算法 k-近邻算法概述 解析和导入数据 使用 Python 导入数据 实施 kNN 分类算法 测试分类器 使用 k-近邻算法改进约会网站的配对效果 收集数据 准备数据:使用 Python ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 机器学习基础——简单易懂的K邻近算法,根据邻居“找自己”
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天的文章给大家分享机器学习领域非常简单的模型--KNN,也就是K Nearest Neighbours算法,翻译过来很简单,就是K最近邻居 ...
- 机器学习算法之K近邻算法
0x00 概述 K近邻算法是机器学习中非常重要的分类算法.可利用K近邻基于不同的特征提取方式来检测异常操作,比如使用K近邻检测Rootkit,使用K近邻检测webshell等. 0x01 原理 ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- 《机器学习实战》学习笔记一K邻近算法
一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...
随机推荐
- crm管理系统
开始的时候,我们小组开始先完成各自的静态页面,并实现页面的跳转. //部门主页面 //部门添加页面 //部门修改页面 并通过AJXA发送到后台,后台通过处理方法,并返回到前端. 需要注意的是:在下拉列 ...
- Pycharm直接连接Github
Pycharm可以说是使用Python语言开发者的必备利器.高校学生有学生邮箱就可以免费使用,着实省了我不少银两.附个license图: Git是一个开源的分布式版本控制系统,用以有效.高速的处理从很 ...
- 改变图像,运用match方法判断
<!DOCTYPE html><html><head> <meta charset="utf-8"> <title>菜鸟 ...
- Java系列 - 用Java8新特性进行Java开发太爽了
本人博客文章网址:https://www.peretang.com/using-java8s-new-features-to-coding-is-awesome/ 前言 从开始写博客到现在已经过去3个 ...
- 【.net 深呼吸】监听剪贴板更新(针对Vista之后系统)
针对 XP 及以前的监视剪贴板更改的方法就不讲了,因为 XP 已严重过时.本篇老周介绍的方法面向 Vista 以上的系统. 在托管应用程序中监听剪贴板更新行为必须用到 Win 32 API ,具体做法 ...
- tomcat支持php
最近做项目遇到了问题,服务器是用的tomcat,而有用到php,就想在tomcat下面可以运行php,步骤如下: 1.下载php压缩包解压或者用wamp/xampp 我下载的是wamp,用的里面的ph ...
- java volatitle介绍与使用
关于关键字volatile可以说是Java虚拟机提供的轻量级的同步机制,但是它并不容易完全被正常.完整地理解,以至于许多程序员都不习惯去使用它,遇到需要处理多线程数据竞争问题的时候一律使用Synchr ...
- 不同浏览器创建 ajax XMLHTTPRequest对象的方法及兼容性问题总结
XMLHttpRequest 对象是AJAX功能的核心,要开发AJAX程序必须从了解XMLHttpRequest 对象开始. 了解XMLHttpRequest 对象就先从创建XMLHttpReques ...
- 使用random输出10个double型的随机数
使用random输出10个double型的随机数 代码如下: package Day05;import java.util.Random;import java.util.Scanner; publi ...
- TCP简单通讯
客户端代码: package com.kaige123.net01; import java.io.IOException; import java.io.InputStream; import ja ...