POJ 2255. Tree Recovery
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 11939 | Accepted: 7493 |
Description
This is an example of one of her creations:
D
/ \
/ \
B E
/ \ \
/ \ \
A C G
/
/
F
To record her trees for future generations, she wrote down two strings for each tree: a preorder traversal (root, left subtree, right subtree) and an inorder traversal (left subtree, root, right subtree). For the tree drawn above the preorder traversal is DBACEGF and the inorder traversal is ABCDEFG.
She thought that such a pair of strings would give enough information to reconstruct the tree later (but she never tried it).
Now, years later, looking again at the strings, she realized that reconstructing the trees was indeed possible, but only because she never had used the same letter twice in the same tree.
However, doing the reconstruction by hand, soon turned out to be tedious.
So now she asks you to write a program that does the job for her!
Input
Each test case consists of one line containing two strings preord and inord, representing the preorder traversal and inorder traversal of a binary tree. Both strings consist of unique capital letters. (Thus they are not longer than 26 characters.)
Input is terminated by end of file.
Output
Sample Input
DBACEGF ABCDEFG
BCAD CBAD
Sample Output
ACBFGED
CDAB
Source
#include <stdio.h>
char in[],pre[],*pr;
void maketree(char *in)
{
char *mid,tmp;
if(*in=='\0')
return;
//mid = strchr(in,*pr++);
for(mid=in;*mid!=*pr;)
mid++;
pr++; tmp = *mid;
*mid = '\0';
mid++;
maketree(in);
maketree(mid);
putchar(tmp);
}
int main()
{
while(scanf("%s%s", pre, in) == ) {
pr=pre;
maketree(in);
putchar('\n');
}
return ;
}
我的递归里面因为不是用下标处理的,也没在参数里加长度来判断,所以显得麻烦点。如果加了长度判断,则几行就搞定了(代码来自SCNU变态的小liming):
void solve(char*a,char*b,int L){
char*i;
if(L){
i=strchr(b,*a);
solve(a+,b,i-b);
solve(a-b+i+,i+,b+L-i-);
putchar(*a);
}
}
POJ 2255. Tree Recovery的更多相关文章
- poj 2255 Tree Recovery 分治
Tree Recovery Description Little Valentine liked playing with binary trees very much. Her favorite g ...
- poj 2255 Tree Recovery(求后序遍历,二叉树)
版权声明:本文为博主原创文章,未经博主同意不得转载.vasttian https://blog.csdn.net/u012860063/article/details/37699219 转载请注明出处 ...
- POJ 2255 Tree Recovery 树的遍历,分治 难度:0
http://poj.org/problem?id=2255 #include<cstdio> #include <cstring> using namespace std; ...
- Poj 2255 Tree Recovery(二叉搜索树)
题目链接:http://poj.org/problem?id=2255 思路分析:根据先序遍历(如DBACEGF)可以找出根结点(D),其后为左右子树:根据中序遍历(如ABCDEFG),已知根结点(D ...
- POJ 2255 Tree Recovery && Ulm Local 1997 Tree Recovery (二叉树的前中后序遍历)
链接:poj.org/problem?id=2255 本文链接:http://www.cnblogs.com/Ash-ly/p/5463375.html 题意: 分别给你一个二叉树的前序遍历序列和中序 ...
- POJ 2255 Tree Recovery 二叉树的遍历
前序和中序输入二叉树,后序输出二叉树:核心思想只有一个,前序的每个根都把中序分成了两部分,例如 DBACEGF ABCDEFG D把中序遍历的结果分成了ABC和EFG两部分,实际上,这就是D这个根的左 ...
- POJ 2255 Tree Recovery(根据前序遍历和中序遍历,输出后序遍历)
题意:给出一颗二叉树的前序遍历和中序遍历的序列,让你输出后序遍历的序列. 思路:见代码,采用递归. #include <iostream> #include <stdio.h> ...
- POJ 2255 Tree Recovery 二叉树恢复
一道和Leetcode的一道题目基本上一样的题目. 给出前序遍历和中序遍历序列,要求依据这些信息恢复一颗二叉树的原貌,然后按后序遍历序列输出. Leetcode上有给出后序和中序,恢复二叉树的. 只是 ...
- POJ 2255 Tree Recovery——二叉树的前序遍历、后序遍历、中序遍历规则(递归)
1.前序遍历的规则:(根左右) (1)访问根节点 (2)前序遍历左子树 (3)前序遍历右子树 对于图中二叉树,前序遍历结果:ABDECF 2.中序遍历的规则:(左根右) (1)中序遍历左子树 (2)访 ...
随机推荐
- 剖析AngularJS作用域
一.概要 在AngularJS中,子作用域(child scope)基本上都要继承自父作用域(parent scope). 但,事无绝对,也有特例,那就是指令中scope设置项为对象时,即scope: ...
- 【知识积累】try-catch-finally+return总结
一.前言 对于找Java相关工作的读者而言,在笔试中肯定免不了遇到try-catch-finally + return的题型,需要面试这清楚返回值,这也是这篇博文产生的由来.本文将从字节码层面来解释为 ...
- 3.C#WinForm基础累加器
功能:实现累加计算. 知识点: bool int.TryParse(string s,out int result)(+1重载) 将数字的字符串形式转换为它的等效的32位有效的有符号整数,一个指示操作 ...
- javaWeb应用打包
在Java中,使用"jar"命令来对将JavaWeb应用打包成一个War包,jar命令的用法如下:
- 谈谈React那些小事
前言 说起React,那也是近一年多时间火起来的前端框架,其在Facebook的影响力和大力推广下,已然成为目前前端界的中流砥柱.在如今的前端框架界,React.Vue.Angular三分天下的时代已 ...
- asp.net core 依赖注入问题
最近.net core可以跨平台了,这是一个伟大的事情,为了可以赶上两年以后的跨平台部署大潮,我也加入到了学习之列.今天研究的是依赖注入,但是我发现一个问题,困扰我很久,现在我贴出来,希望可以有人帮忙 ...
- MVC5发送邮件注册
#region 发送邮件 //填写电子邮件地址,和显示名称 System.Net.Mail.MailAddress from = new System.Net.Mail.MailAddress(&qu ...
- 【工具】VS2010常用调试技巧(1)
调试是一个程序员最基本的技能,其重要性不言自明.不会调试的程序员就意味着他即使会一门语言,却不能编制出好的软件.本文就本人在开发过程中常用的调试技巧作下简单呢介绍,希望对大家有所帮助,能力超群者请绕道 ...
- android
配置Activity 的启动模式: 在 AndroidManifest.xml 中配置: <activity android:name=".MainActivity" and ...
- app端上传文件至服务器后台,web端上传文件存储到服务器
1.android前端发送服务器请求 在spring-mvc.xml 将过滤屏蔽(如果不屏蔽 ,文件流为空) <!-- <bean id="multipartResolver&q ...