洛谷银牛派对SPFA
题目描述
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
寒假到了,N头牛都要去参加一场在编号为X(1≤X≤N)的牛的农场举行的派对(1≤N≤1000),农场之间有M(1≤M≤100000)条有向路,每条路长Ti(1≤Ti≤100)。
每头牛参加完派对后都必须回家,无论是去参加派对还是回家,每头牛都会选择最短路径,求这N头牛的最短路径(一个来回)中最长的一条路径长度。
输入输出格式
输入格式:
第一行三个整数N,M, X;
第二行到第M+1行:每行有三个整数Ai,Bi, Ti ,表示有一条从Ai农场到Bi农场的道路,长度为Ti。
输出格式:
一个整数,表示最长的最短路得长度。
输入输出样例
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
10
说明

依旧是个图论的水题,正反两次SPFA水过,注意起点是s,不是1。我因为这个WA了一次
//Gang
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<queue>
#include<cmath>
#define FOR(x,y,z) for(int x=y;x<=z;x++)
#define REP(x,y,z) for(int x=y;x>=z;x--)
#define ll long long
using namespace std;
int n,m,x;
];
],hd[];
],hd1[];
int cnt;
int a,b,t;
struct node
{
int v,next,dis;
} e[],e1[];
void SPFA()
{
queue<int>q;
q.push(x);
book[x]=;
dis1[x]=;
while(!q.empty())
{
int u=q.front();
q.pop();
book[u]=;
for(int i=hd[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis1[v]>dis1[u]+e[i].dis)
{
dis1[v]=dis1[u]+e[i].dis;
if(!book[v])
{
q.push(v);
book[v]=;
}
}
}
}
}
void SPFA2()
{
queue<int>q;
q.push(x);
book[x]=;
dis2[x]=;
while(!q.empty())
{
int u=q.front();
q.pop();
book[u]=;
for(int i=hd1[u];i;i=e1[i].next)
{
int v=e1[i].v;
if(dis2[v]>dis2[u]+e1[i].dis)
{
dis2[v]=dis2[u]+e1[i].dis;
if(!book[v])
{
q.push(v);
book[v]=;
}
}
}
}
}
int main()
{
memset(dis1,0x7f,sizeof(dis1));
memset(dis2,0x7f,sizeof(dis2));
scanf("%d%d%d",&n,&m,&x);
FOR(i,,m)
{
scanf("%d%d%d",&a,&b,&t);
e[i].v=b;
e[i].dis=t;
e[i].next=hd[a];
hd[a]=i;
e1[i].v=a;
e1[i].dis=t;
e1[i].next=hd1[b];
hd1[b]=i;
}
SPFA();
memset(book,,sizeof(book));
SPFA2();
;
FOR(i,,n)
min1=max(min1,dis1[i]+dis2[i]);
printf("%d",min1);
;
}
洛谷银牛派对SPFA的更多相关文章
- 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
- 洛谷 P1821 [USACO07FEB]银牛派对Silver Cow Party 题解
P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...
- 洛谷P1342 请柬(SPFA)
To 洛谷.1342 请柬 题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤其是古色古香的喜剧片.他们已经打印请帖和所有必要的信息和计 ...
- [洛谷P3697]开心派对小火车
题目:洛谷P3697 题目大意是有各站停列车(慢车,相邻2站时间A)和特急列车(相邻2站时间B),特急列车在特定站点停靠. 现在加一种快速列车(相邻2站时间C,A>C>B),停靠K站(包括 ...
- [洛谷201704R1]开心派对小火车
OJ题号:洛谷P3697 思路: 贪心.首先从起点出发,开特急电车,对于每一个特急车站$s_{i}$,分别下一次车,计算从当前车站$s_{i}$出发坐各停电车在指定时限内$t$最远能够到达的车站$r_ ...
- 洛谷P1821 [USACO07FEB]银牛派对Silver Cow Party
题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the b ...
- 洛谷 P1821 [USACO07FEB]银牛派对Silver Cow Party
银牛派对 正向建图+反向建图, 两边跑dijkstra,然后将结果相加即可. 反向建图以及双向建图的做法是学习图论的必备思想. #include <iostream> #include & ...
- 洛谷 1821 [USACO07FEB]银牛派对Silver Cow Party
[题解] 其实解法 #include<cstdio> #include<cstring> #include<algorithm> #define LL long l ...
- P1821 [USACO07FEB]银牛派对Silver Cow Party
题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the b ...
随机推荐
- MongoDB基本命令行操作
1. 连接MongoDB: Mongodb://username:password@hostname/dbname 2. 创建数据库: use dbname:如果数据库不存在则创建数据库,否则切换到指 ...
- C# 使用OpenCV在一张图片里寻找人脸
先上个效果图 相关库的下载 例程中用到一个库叫做emgucv,是opencv\的net封装 编译打包好的稳定版,在这:https://sourceforge.net/projects/emgucv/f ...
- python matplotlib 图表局部放大
import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes ...
- poj 3662 Telephone Lines
Telephone Lines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7115 Accepted: 2603 D ...
- Maven合并多个war包的工程需要用到的插件
<build> <finalName>WebSite</finalName> <plugins> <!-- 配置war包合并的插件 --> ...
- AngularJS学习篇(十一)
AngularJS 表格 ng-repeat 指令可以完美的显示表格. <!DOCTYPE html> <html> <head> <meta charset ...
- Linux双网卡绑定实现负载均衡
系统环境:CentOS release 6.9 (Final) Linux centos6 2.6.32-696.10.1.el6.x86_64 Ubuntu系统下使用ifenslave进行网卡配置, ...
- HTML 3秒一换轮播(鼠标选中旋转停止定时) 动画案例
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- POI不同版本替换Word模板时的问题
一.问题描述 通过POI,把Word中的占位符替换为实际的值,以生成复杂结构的业务报告. 在POI 3.9上,功能正常.由于某些原因升级到POI 3.10.1后,项目组反馈说Word模板出错,无法生成 ...
- MVC架构下,使用NPOI读取.DOCX文档中表格的内容
1.使用NPOI,可以在没有安装office的设备上读wiod.office.2.本文只能读取.docx后缀的文档.3.MVC架构中,上传文件只能使用form表单提交,转到控制器后要依次实现文件上传. ...