题目描述

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

寒假到了,N头牛都要去参加一场在编号为X(1≤X≤N)的牛的农场举行的派对(1≤N≤1000),农场之间有M(1≤M≤100000)条有向路,每条路长Ti(1≤Ti≤100)。

每头牛参加完派对后都必须回家,无论是去参加派对还是回家,每头牛都会选择最短路径,求这N头牛的最短路径(一个来回)中最长的一条路径长度。

输入输出格式

输入格式:

第一行三个整数N,M, X;

第二行到第M+1行:每行有三个整数Ai,Bi, Ti ,表示有一条从Ai农场到Bi农场的道路,长度为Ti。

输出格式:

一个整数,表示最长的最短路得长度。

输入输出样例

输入样例#1:

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
输出样例#1:

10

说明

依旧是个图论的水题,正反两次SPFA水过,注意起点是s,不是1。我因为这个WA了一次

//Gang
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<queue>
#include<cmath>
#define FOR(x,y,z) for(int x=y;x<=z;x++)
#define REP(x,y,z) for(int x=y;x>=z;x--)
#define ll long long
using namespace std;
int n,m,x;
];
],hd[];
],hd1[];
int cnt;
int a,b,t;
struct node
{
    int v,next,dis;
} e[],e1[];
void SPFA()
{
    queue<int>q;
    q.push(x);
    book[x]=;
    dis1[x]=;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        book[u]=;
        for(int i=hd[u];i;i=e[i].next)
        {
            int v=e[i].v;
            if(dis1[v]>dis1[u]+e[i].dis)
            {
                dis1[v]=dis1[u]+e[i].dis;
                if(!book[v])
                {
                    q.push(v);
                    book[v]=;
                }
            }
        }
    }
}
void SPFA2()
{
    queue<int>q;
    q.push(x);
    book[x]=;
    dis2[x]=;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        book[u]=;
        for(int i=hd1[u];i;i=e1[i].next)
        {
            int v=e1[i].v;
            if(dis2[v]>dis2[u]+e1[i].dis)
            {
                dis2[v]=dis2[u]+e1[i].dis;
                if(!book[v])
                {
                    q.push(v);
                    book[v]=;
                }
            }
        }
    }
}
int main()
{
    memset(dis1,0x7f,sizeof(dis1));
    memset(dis2,0x7f,sizeof(dis2));
    scanf("%d%d%d",&n,&m,&x);
    FOR(i,,m)
    {
        scanf("%d%d%d",&a,&b,&t);
        e[i].v=b;
        e[i].dis=t;
        e[i].next=hd[a];
        hd[a]=i;
        e1[i].v=a;
        e1[i].dis=t;
        e1[i].next=hd1[b];
        hd1[b]=i;
    }
    SPFA();
    memset(book,,sizeof(book));
    SPFA2();
    ;
    FOR(i,,n)
    min1=max(min1,dis1[i]+dis2[i]);
    printf("%d",min1);
    ;
}

洛谷银牛派对SPFA的更多相关文章

  1. 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party

    P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...

  2. 洛谷 P1821 [USACO07FEB]银牛派对Silver Cow Party 题解

    P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...

  3. 洛谷P1342 请柬(SPFA)

    To 洛谷.1342 请柬 题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤其是古色古香的喜剧片.他们已经打印请帖和所有必要的信息和计 ...

  4. [洛谷P3697]开心派对小火车

    题目:洛谷P3697 题目大意是有各站停列车(慢车,相邻2站时间A)和特急列车(相邻2站时间B),特急列车在特定站点停靠. 现在加一种快速列车(相邻2站时间C,A>C>B),停靠K站(包括 ...

  5. [洛谷201704R1]开心派对小火车

    OJ题号:洛谷P3697 思路: 贪心.首先从起点出发,开特急电车,对于每一个特急车站$s_{i}$,分别下一次车,计算从当前车站$s_{i}$出发坐各停电车在指定时限内$t$最远能够到达的车站$r_ ...

  6. 洛谷P1821 [USACO07FEB]银牛派对Silver Cow Party

    题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the b ...

  7. 洛谷 P1821 [USACO07FEB]银牛派对Silver Cow Party

    银牛派对 正向建图+反向建图, 两边跑dijkstra,然后将结果相加即可. 反向建图以及双向建图的做法是学习图论的必备思想. #include <iostream> #include & ...

  8. 洛谷 1821 [USACO07FEB]银牛派对Silver Cow Party

    [题解] 其实解法 #include<cstdio> #include<cstring> #include<algorithm> #define LL long l ...

  9. P1821 [USACO07FEB]银牛派对Silver Cow Party

    题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the b ...

随机推荐

  1. input输入框校验,字母,汉字,数字等

    <!DOCTYPE html><html><head> <meta charset="utf-8"> <meta http-e ...

  2. LeetCode 101. Symmetric Tree (对称树)

    Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...

  3. es6总结

    主要包括let const,模板字符串,解构赋值,箭头函数,扩展运算符,Promise,类,import export等 一.let和const 1.let所声明的变量只在let所在的代码块内有效.l ...

  4. nvm进行node多版本管理

    写在前面 nvm(nodejs version manager)是nodejs的管理工具,如果你需要快速更新node版本,并且不覆盖之前的版本:或者想要在不同的node版本之间进行切换: 使用nvm来 ...

  5. 2015-2016 ACM-ICPC, NEERC, Southern Subregional Contest J Cleaner Robot

    Cleaner RobotCrawling in process... Crawling failed Time Limit:2000MS     Memory Limit:524288KB     ...

  6. JavaScript基础一(js基础函数与运算符)

    [使用js的三种方式] 1.在HTML标签中,直接内嵌js(并不提倡使用) <button onclick=" alert('点就点')"> 点我啊</butto ...

  7. ASP.NET Core的身份认证框架IdentityServer4(3)-术语的解释

    IdentityServer4 术语 IdentityServer4的规范.文档和对象模型使用了一些你应该了解的术语. 身份认证服务器(IdentityServer) IdentityServer是一 ...

  8. 分布式框架Dubbo入门

    Dubbo简介 Dubbo是一个Alibaba开源额分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.dubbo就是个服务框架,只有在分布式的时候,才有dubb ...

  9. How to Quickly Create a Copy of a Table using Transact-SQL

    The easiest way to create a copy of a table is to use a Transact-SQL command. Use SELECT INTO to ext ...

  10. JAVA调用matlab代码

    做实验一直用的matlab代码,需要嵌入到java项目中,matlab代码拼拼凑凑不是很了解,投机取巧采用java调用matlab的方式解决. 1.    matlab版本:matlabR2014a ...