Luogu2455 [SDOI2006]线性方程组 (高斯消元)
模板特殊情况没exit(0) $\longrightarrow$60 了一下午
//#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 107;
const double eps = 1e-8;
int n;
double a[N][N], ans[N];
inline double fabs(double a){
return a < 0 ? -a : a;
}
inline void Gauss(){
R(i,1,n){
int r = i;
R(j,i + 1,n)
if(fabs(a[j][i]) > fabs(a[r][i]))
r = j;
if(i != r) swap(a[i], a[r]);
if(fabs(a[i][i]) > eps){
R(j,1,n){
if(i == j) continue;
double s = a[j][i] / a[i][i];
R(k,1,n + 1)
a[j][k] -= s * a[i][k];
}
}
}
int flagNo = 0, flagInf = 0;
R(i,1,n){
int tot = 0;
R(j,1,n + 1){
if(fabs(a[i][j]) < eps)
++tot;
else
break;
}
if(tot == n + 1) flagInf = 1;
else if(tot == n && fabs(a[i][n + 1]) > eps) flagNo = 1;
}
if(flagNo == 1){ printf("-1"); exit(0);}
if(flagInf == 1){ printf("0"); exit(0);}
nR(i,n,1){
ans[i] = a[i][n + 1] / a[i][i];
nR(j,i - 1,1){
a[j][n + 1] -= a[j][i] * ans[i];
}
}
}
int main(){
io >> n;
R(i,1,n){
R(j,1,n + 1){
scanf("%lf", &a[i][j]);
}
}
Gauss();
R(i,1,n){
// if(fabs(ans[i]) < eps)
// printf("x%d=0\n", i);
// else
printf("x%d=%.2lf\n", i, ans[i]);
}
return 0;
}

Luogu2455 [SDOI2006]线性方程组 (高斯消元)的更多相关文章
- 洛谷P2455 [SDOI2006]线性方程组(高斯消元)
题目描述 已知n元线性一次方程组. 其中:n<=50, 系数是[b][color=red]整数<=100(有负数),bi的值都是整数且<300(有负数)(特别感谢U14968 mmq ...
- hdu 5755(高斯消元——模线性方程组模板)
PS. 看了大神的题解,发现确实可以用m个未知数的高斯消元做.因为确定了第一行的情况,之后所有行的情况都可以根据第一行推. 这样复杂度直接变成O(m*m*m) 知道了是高斯消元后,其实只要稍加处理,就 ...
- HDU.3571.N-dimensional Sphere(高斯消元 模线性方程组)
题目链接 高斯消元详解 /* $Description$ 在n维空间中给定n+1个点,求一个点使得这个点到所有点的距离都为R(R不给出).点的任一坐标|xi|<=1e17. $Solution$ ...
- POJ.2065.SETI(高斯消元 模线性方程组)
题目链接 \(Description\) 求\(A_0,A_1,A_2,\cdots,A_{n-1}\),满足 \[A_0*1^0+A_1*1^1+\ldots+A_{n-1}*1^{n-1}\equ ...
- 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...
- 题解【AcWing883】高斯消元解线性方程组
题面 高斯消元模板题. 这里直接讲述一下高斯消元的算法流程: 枚举每一列 \(c\): 找到第 \(c\) 列绝对值最大的一行: 将这一行换到最上面: 将该行的第一个数变成 \(1\): 将下面所有行 ...
- *POJ 1222 高斯消元
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9612 Accepted: 62 ...
- BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...
- hihocoder 1196 高斯消元.二
传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中,小Hi和小Ho趁着便利店打折,买了一大堆零食.当他们结账后,看到便利店门口还有其他的活动. 店主:买了 ...
- ZOJ 3645 BiliBili(高斯消元)
Shirai Kuroko is a Senior One student. Almost everyone in Academy City have super powers, and Kuroko ...
随机推荐
- Redis 全局通用命令整理
转载请注明出处: 1.查看所有键 keys * 该命令会存在线程阻塞问题,keys 命令也可以通过正则匹配获取存在的缓存数据 2.查看键总数 dbsize dbsize命令会返回当前数据库中键的总数. ...
- RabbitMQ 环境安装
每日一句 Wisdom is knowing what to do next, skill is knowing how to do it, and virtue is doing it. 智慧是知道 ...
- [算法学习] 换根dp
换根dp 一般来说,我们做题的树都是默认 \(1\) 为根的.但是有些题目需要计算以每个节点为根时的内容. 朴素的暴力:以每个点 \(u\) 作为 \(root\) 暴力dfs下去,复杂度\(O(n^ ...
- JAVA - 缓冲和缓存
JAVA - 缓冲和缓存 缓冲 Buffer 功能:协调上下层应用之间的性能差异.通过缓冲区的缓冲,当上层组件性能优于下层组件的时候,缓冲可以有效减少上层组件对下层组件的等待时间. 使用场景:IO流中 ...
- Java 基础常见知识点&面试题总结(上),2022 最新版!| JavaGuide
你好,我是 Guide.秋招即将到来,我对 JavaGuide 的内容进行了重构完善,公众号同步一下最新更新,希望能够帮助你. 基础概念与常识 Java 语言有哪些特点? 简单易学: 面向对象(封装, ...
- 31.Squid缓存代理服务器应用
Squid缓存代理服务器应用 Squid安装介绍 web缓存的工作机制 缓存网页对象,减少重复请求 squid 主要提供缓存加速.应用层过滤控制的功能. 工作机制 代替客户机问网站请求数据,从而可以隐 ...
- 4.怎么理解相互独立事件?真的是没有任何关系的事件吗? 《zobol的考研概率论教程》
1.从条件概率的定义来看独立事件的定义 2.从古典概率的定义来看独立事件的定义 3.P(A|B)和P(A)的关系是什么? 4.由P(AB)=P(A)P(B)推出"独立" 5.从韦恩 ...
- JS:条件语句1
条件语句: 1.if...else if (condition1) { 当条件 1 为 true 时执行 } else { 当条件 1 不为 true 时执行 } if (condition1) { ...
- 新上线!3D单模型轻量化硬核升级,G级数据轻松拿捏!
"3D模型体量过大.面数过多.传输展示困难",用户面对这样的3D数据,一定不由得皱起眉头.更便捷.快速处理三维数据,是每个3D用户对高效工作的向往. 在老子云最新上线的单模型轻量化 ...
- 实现领域驱动设计 - 使用ABP框架 - 解决方案概览
.NET解决方案的分层 下图显示了使用ABP的 应用启动模板 创建的Visual Studio解决方案: 解决方案名称为问题跟踪,它由多个项目组成.通过考虑DDD原则以及开发和部署实践,该解决方案是分 ...