数据预处理时为什么要使用OneHot编码?
什么是LabelEncoder(整数编码)
整数编码 将一列文本数据转化成数值,即列中的每一个特征都通过一个整数来表示。例如,[red, blue, red, yellow] = [0,2,0,1]。

什么是OneHotEncoder(独热编码)
独热编码 将一列文本数据转化成一列或多列只有0和1的数据,即列中的每一个特征都通过一个向量来表示。例如,[red, blue, red, yellow] = [1,2,1,3] 会被转化成3列用0和1表示的数据列。

独热编码好在哪里?
将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。
比如,对于红、蓝、黄三个颜色,不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3)。两个颜色之间的距离是,d(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_3) = 2。那么红色和黄色之间就越不相似吗?显然这样的表示,计算出来的特征的距离是不合理。
但如果使用one-hot编码,则得到x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1),那么两个颜色之间的距离就都是sqrt(2).即每两个颜色之间的距离是一样的,这样显得更合理。
对于特征数大于2的要使用独热编码,小于等于2时不会出现上述距离错误问题。
独热编码对决策树模型的影响
独热编码会使数据的列增多,将这样的数据输入到决策树模型后,因为决策树模型的特性,树的深度增加,最终导致执行效率降低。
在处理此类任务时要注意这个问题。
参考资料
数据预处理时为什么要使用OneHot编码?的更多相关文章
- TensorFlow从1到2(六)结构化数据预处理和心脏病预测
结构化数据的预处理 前面所展示的一些示例已经很让人兴奋.但从总体看,数据类型还是比较单一的,比如图片,比如文本. 这个单一并非指数据的类型单一,而是指数据组成的每一部分,在模型中对于结果预测的影响基本 ...
- 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码
一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...
- 数据预处理之独热编码(One-Hot):为什么要使用one-hot编码?
一.问题由来 最近在做ctr预估的实验时,还没思考过为何数据处理的时候要先进行one-hot编码,于是整理学习如下: 在很多机器学习任务如ctr预估任务中,特征不全是连续值,而有可能是分类值.如下: ...
- 【转】数据预处理之独热编码(One-Hot Encoding)
原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...
- 机器学习实战:数据预处理之独热编码(One-Hot Encoding)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 数据预处理:独热编码(One-Hot Encoding)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- 数据预处理之独热编码(One-Hot Encoding)(转载)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 机器学习 数据预处理之独热编码(One-Hot Encoding)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 机器学习:数据预处理之独热编码(One-Hot)
前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的 ...
- 数据预处理之独热编码(One-Hot Encoding)
问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...
随机推荐
- python基础之open函数和路径处理
前言 本次内容主要介绍文件处理open函数以及路径处理. 一.open函数 根据前面介绍的函数调用方式,调用open函数. #open函数调用 open() TypeError: open() mis ...
- C#-等待异步函数执行结果-将调用异步方法的函数变成非异步执行
先来简单了解一下async.await 使用async await 的前提条件:需要C# 5.0以上版本 .NET Framework 4.5以上 Visual Studio 2012以上. asyn ...
- ML-L1、L2 正则化
出现过拟合时,使用正则化可以将模型的拟合程度降低一点点,使曲线变得缓和. L1正则化(LASSO) 正则项是所有参数的绝对值的和.正则化不包含theta0,因为他只是偏置,而不影响曲线的摆动幅度. \ ...
- TensorFlow?PyTorch?Paddle?AI工具库生态之争:ONNX将一统天下
作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 本文地址:https://www.showmeai.tech/artic ...
- webpack -- element-ui 的按需引入
简单说明原理: 使用babel-plugin-component实现按需引入.打包.将webpack配置成多入口,保证最终打包的目录结构符合babel-plugin-component插件的要求,实现 ...
- 【实操日记】使用 PyQt5 设计下载远程服务器日志文件程序
最近通过 PyQt5 设计了一个下载服务器指定日期日志文件的程序,里面有些有意思的技术点,现在做一些分享. PyQt5 是一套 Python 绑定 Digia Qt5 应用的框架,是最强大的 GUI ...
- cowsay和ansible
简介 cowsay是一款有趣的ascii图案输出工具,通过它可以方便的输出一头说话的牛牛(马?): # cowsay hello frankming _________________ < he ...
- 【深入浅出 Yarn 架构与实现】3-1 Yarn Application 流程与编写方法
本篇学习 Yarn Application 编写方法,将带你更清楚的了解一个任务是如何提交到 Yarn ,在运行中的交互和任务停止的过程.通过了解整个任务的运行流程,帮你更好的理解 Yarn 运作方式 ...
- spring运行报500 bean不存在
spring运行报500 bean不存在 bean不存在 步骤: 查看bean是否注入成功 junit单元测试 问题,不一定在我们底层,是spring出现了问题 SpringMVC整合 ...
- python基础(三)装饰器
字典推导式: data_list = ['1 hello','2 world'] result = {item.split(" ")[0]: item.split(" & ...