spark 写入数据到Geomesa(Hbase)
package com.grady.geomesa
import org.apache.spark.sql.jts.PointUDT
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.{SparkConf, sql}
import org.geotools.data.DataStoreFinder
import org.geotools.geometry.jts.JTSFactoryFinder
import org.locationtech.geomesa.utils.geotools.SchemaBuilder
import org.locationtech.jts.geom.Coordinate
import org.locationtech.geomesa.spark.jts._
import scala.collection.JavaConversions._
object SparkWriteGeomesa {
val ToGeomesaCatalog = "gradytest"
val ToGeomesaCatalogFeature = "student"
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("SparkWriteGeomesa")
val ss = SparkSession.builder().config(conf).getOrCreate().withJTS
// 组装要写入的数据
val inDataFrame = gainData(ss)
inDataFrame.show()
// 写入数据
saveData(inDataFrame, ToGeomesaCatalog, ToGeomesaCatalogFeature)
ss.stop()
}
def gainData(ss: SparkSession): sql.DataFrame = {
val inDataRDD = ss.sparkContext.makeRDD(Array("1,jack,15,11.10,12.10", "2,Lily,16,12.10,13.10", "3,mike,16,14.10,15.10"))
val rowRDD = inDataRDD.map(_.split(','))
.map(row => {
val id = row(0)
val name = row(1)
val age = row(2)
val lon = row(3).toDouble
val lat = row(4).toDouble
val factory = JTSFactoryFinder.getGeometryFactory()
val coordinate = new Coordinate(lon, lat)
val geom = factory.createPoint(coordinate)
Row(geom, id, name, age)
})
val structType = StructType(
Seq(
StructField("geom", PointUDT, nullable = true),
StructField("studentId", StringType, nullable = true),
StructField("name", StringType, nullable = true),
StructField("age", StringType, nullable = true)
)
)
ss.createDataFrame(rowRDD, structType)
}
def saveData(inDataFrame: sql.DataFrame, toGeomesaCatalog: String, toGeomesaCatalogFeature: String) = {
val sft = SchemaBuilder.builder()
.addPoint("geom", true)
// 不可用id, id为保留字段
.addString("studentId")
.addString("name")
.addString("age")
.build(toGeomesaCatalogFeature)
//geomesa.mix.geometries指定同时支持point 和non-point混合几何特性
sft.getUserData.put("geomesa.mixed.geometries",Boolean.box(true))
val params = Map(
"hbase.zookeepers" -> "10.82.232.64:2181",
"hbase.catalog" -> toGeomesaCatalog)
//创建feature
DataStoreFinder.getDataStore(params).createSchema(sft)
inDataFrame.write.format("geomesa")
.options(params)
.option("geomesa.feature", toGeomesaCatalogFeature)
.save()
}
}
hbase 查看表是否生成:
hbase(main):001:0> list
TABLE
gradytest
gradytest_student_id_v4
gradytest_student_z2_geom_v5
## geomesa 数据会序列化,这里是序列化后的数据
hbase(main):003:0> scan 'gradytest_student_z2_geom_v5'
ROW COLUMN+CELL
\x000\x85\xD7\x8C\x9B\xE0\xE7\xF column=d:, timestamp=2022-02-09T19:21:38.287, value=\x03\x00\x04\x02\x00\x0E\x00 \x00"\x00&\x00(\
F000017ed-e37a-4e60-b90f-93fc81e x00\x00\x00\x00\x01\x01@&333333@(333333\x821jac\xEB1\xB5
0ab0e
\x000\x922Q\xB1\xD4\x1E\xFF00001 column=d:, timestamp=2022-02-09T19:19:35.603, value=\x03\x00\x04\x02\x00\x0E\x00 \x00"\x00&\x00(\
7ed-e35c-4d77-99e7-c6918a06c008 x00\x00\x00\x00\x01\x01@(333333@*333333\x822Lil\xF91\xB6
\x000\x99\x8A\xA5\xB6\xEBQ\x0200 column=d:, timestamp=2022-02-09T19:21:38.332, value=\x03\x00\x04\x02\x00\x0E\x00 \x00"\x00&\x00(\
0017ed-e37a-4ebd-b3a5-a9c7399a63 x00\x00\x00\x00\x01\x01@,333333@.333333\x823mik\xE51\xB6
5b
\x000\x99\x8A\xA5\xB6\xEBQ\x0200 column=d:, timestamp=2022-02-09T20:02:28.707, value=\x03\x00\x04\x02\x00\x0E\x00 \x00"\x00&\x00(\
0017ed-e5d1-4257-a75d-b0e2372954 x00\x00\x00\x00\x01\x01@,333333@.333333\x823mik\xE51\xB6
2e
\x020\x85\xD7\x8C\x9B\xE0\xE7\xF column=d:, timestamp=2022-02-09T19:19:35.334, value=\x03\x00\x04\x02\x00\x0E\x00 \x00"\x00&\x00(\
F000017ed-e35c-4d77-a841-b3bcf6f x00\x00\x00\x00\x01\x01@&333333@(333333\x821jac\xEB1\xB5
aa8ac
\x020\x922Q\xB1\xD4\x1E\xFF00001 column=d:, timestamp=2022-02-09T19:21:38.285, value=\x03\x00\x04\x02\x00\x0E\x00 \x00"\x00&\x00(\
7ed-e37a-4e60-9d7f-66988be48234 x00\x00\x00\x00\x01\x01@(333333@*333333\x822Lil\xF91\xB6
\x020\x99\x8A\xA5\xB6\xEBQ\x0200 column=d:, timestamp=2022-02-09T19:19:35.335, value=\x03\x00\x04\x02\x00\x0E\x00 \x00"\x00&\x00(\
0017ed-e35c-4e9a-8600-97ed8d92c4 x00\x00\x00\x00\x01\x01@,333333@.333333\x823mik\xE51\xB6
8b
\x030\x85\xD7\x8C\x9B\xE0\xE7\xF column=d:, timestamp=2022-02-09T20:02:28.622, value=\x03\x00\x04\x02\x00\x0E\x00 \x00"\x00&\x00(\
F000017ed-e5d1-41f8-ae71-84db58b x00\x00\x00\x00\x01\x01@&333333@(333333\x821jac\xEB1\xB5
9478f
\x030\x922Q\xB1\xD4\x1E\xFF00001 column=d:, timestamp=2022-02-09T20:02:28.662, value=\x03\x00\x04\x02\x00\x0E\x00 \x00"\x00&\x00(\
7ed-e5d1-41f8-a308-efcee8b70bf9 x00\x00\x00\x00\x01\x01@(333333@*333333\x822Lil\xF91\xB6
9 row(s)
pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>spark-practise</artifactId>
<groupId>org.example</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>geomesa</artifactId>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<geomesa.version>3.1.0</geomesa.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.locationtech.geomesa</groupId>
<artifactId>geomesa-hbase-spark-runtime-hbase2_2.12</artifactId>
<version>3.3.0</version>
<exclusions>
<exclusion>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.locationtech.geomesa</groupId>
<artifactId>geomesa-spark-core_2.12</artifactId>
<version>3.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-yarn_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<resources>
<resource>
<directory>src/main/resources</directory>
<filtering>true</filtering>
</resource>
</resources>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.2.1</version>
<configuration>
<artifactSet>
<excludes>
<exclude>org.slf4j:*</exclude>
</excludes>
</artifactSet>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<createDependencyReducedPom>false</createDependencyReducedPom>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
PS: 一定要使用maven-shade-plugin 插件 或其他插件将相关依赖(比如:geomesa-hbase-spark-runtime-hbase2_2.12)打入,否则会报错
spark 写入数据到Geomesa(Hbase)的更多相关文章
- MapReduce和Spark写入Hbase多表总结
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduc ...
- Spark Streaming实时写入数据到HBase
一.概述 在实时应用之中,难免会遇到往NoSql数据如HBase中写入数据的情景.题主在工作中遇到如下情景,需要实时查询某个设备ID对应的账号ID数量.踩过的坑也挺多,举其中之一,如一开始选择使用NE ...
- spark 读取Geomesa(Hbase)数据
package com.grady.geomesa import org.apache.hadoop.conf.Configuration import org.apache.spark.SparkC ...
- Spark Streaming接收Kafka数据存储到Hbase
Spark Streaming接收Kafka数据存储到Hbase fly spark hbase kafka 主要参考了这篇文章https://yq.aliyun.com/articles/60712 ...
- spark读取hdfs上的文件和写入数据到hdfs上面
def main(args: Array[String]): Unit = { val conf = new SparkConf() conf.set("spark.master" ...
- HBase BulkLoad批量写入数据实战
1.概述 在进行数据传输中,批量加载数据到HBase集群有多种方式,比如通过HBase API进行批量写入数据.使用Sqoop工具批量导数到HBase集群.使用MapReduce批量导入等.这些方式, ...
- spark(三)从hbase取数据
前言 通过spark获取hbase数据的过程中,遇到了InputFormat.文章主要围绕InputFormat介绍.会牵扯到spark,mapreduce,hbase相关内容 InputFormat ...
- 聊一聊 HBase 是如何写入数据的?
hi,大家好,我是大D.今天继续了解下 HBase 是如何写入数据的,然后再讲解一下一个比较经典的面试题. Region Server 寻址 HBase Client 访问 ZooKeeper: 获取 ...
- Spark:DataFrame批量导入Hbase的两种方式(HFile、Hive)
Spark处理后的结果数据resultDataFrame可以有多种存储介质,比较常见是存储为文件.关系型数据库,非关系行数据库. 各种方式有各自的特点,对于海量数据而言,如果想要达到实时查询的目的,使 ...
随机推荐
- 基于JavaFX图形界面演示的迷宫创建与路径寻找
事情的起因是收到了一位网友的请求,他的java课设需要设计实现迷宫相关的程序--如标题概括. 我这边不方便透露相关信息,就只把任务要求写出来. 演示视频指路: 视频过审后就更新链接 完整代码链接: 网 ...
- js--js实现基础排序算法
前言 文本来总结常见的排序算法,通过 JvavScript 来实现 正文 1.冒泡排序 算法思想:比较相邻两个元素的大小,如果第一个比第二个大,就交换它们.从头遍历到尾部,当一轮遍历完后,数组最后一 ...
- 强化学习-学习笔记4 | Actor-Critic
Actor-Critic 是价值学习和策略学习的结合.Actor 是策略网络,用来控制agent运动,可以看做是运动员.Critic 是价值网络,用来给动作打分,像是裁判. 4. Actor-Crit ...
- 2022-7-14 java_2 第七组 刘昀航
@ 目录 一.java约定规范 1.关于建包 2.控制台输入(Scanner) 关于Scanner的bug 计算器小练习: 二. 1.数组 建立数组的三种方式: 数据类型的初始值: 2.二维数组 使用 ...
- AtCoder Beginner Contest 261 F // 树状数组
题目链接:F - Sorting Color Balls (atcoder.jp) 题意: 有n个球,球有颜色和数字.对相邻的两球进行交换时,若颜色不同,需要花费1的代价.求将球排成数字不降的顺序,所 ...
- CF1612D X-Magic Pair
题意: 给一个数对 \((a,b)\) ,每次可以进行操作 \((a,b) \to (|a-b|,b)\) 或 \((a,b) \to (a,∣a−b∣)\),问最后能否令 \(a=x\) 或 \(b ...
- Go语言基础二:常用的Go工具命令
常用的Go工具命令 Go附带了一下有用的命令,这些命令可以简化开发的过程.命令通常包含的IDE中,从而使工具在整个开发环境中保持一致. go run 命令 go run命令实在开发过程中执行的最常见的 ...
- springmvc异常处理解析#ExceptionHandlerExceptionResolver
开头 试想一下我们一般怎么统一处理异常呢,答:切面.但抛开切面不讲,如果对每一个controller方法抛出的异常做专门处理,那么着实太费劲了,有没有更好的方法呢?当然有,就是本篇文章接下来要介绍的s ...
- python socket理解
socket 所谓套接字(Socket),就是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象.一个套接字就是网络上进程通信的一端,提供了应用层进程利用网络协议交换数据的机制.从所处的地位来讲 ...
- BACnet MS/TP转MQTT网关金鸽BL103
BACnet MS/TP转MQTT网关金鸽BL103BL103是一款BACnet路由器,实现 BACnet MS/TP 总线和以太网 BACnetIP 之间通信路由功能,同时也是一款Modbus RT ...