g_w1 = tf.get_variable('g_w1', [z_dim, 3136], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.02))
g_b1 = tf.get_variable('g_b1', [3136], initializer=tf.truncated_normal_initializer(stddev=0.02))
g1 = tf.matmul(z, g_w1) + g_b1
g1 = tf.reshape(g1, [-1, 56, 56, 1])
#reshape为什么会有-1???

reshape即把矩阵的形状变一下,这跟matlab一样的,但如果参数是-1的话是什么意思呢?

 In [21]:

 tensor = tf.constant([1, 2, 3, 4, 5, 6, 7,8])

 In [22]:

 sess.run(tf.initialize_all_variables())

 In [23]:

 print(sess.run(tensor))

 [1 2 3 4 5 6 7 8]
In [24]: tensorReshape = tf.reshape(tensor,[2,4]) In [25]: print(sess.run(tensorReshape)) [[1 2 3 4]
[5 6 7 8]]
In [26]: tensorReshape = tf.reshape(tensor,[1,2,4]) In [27]: print(sess.run(tensorReshape)) [[[1 2 3 4]
[5 6 7 8]]]
In [28]: tensorReshape = tf.reshape(tensor,[-1,2,2]) In [29]: print(sess.run(tensorReshape)) [[[1 2]
[3 4]] [[5 6]
[7 8]]]
所以-1,就是缺省值,就是先以你们合适,到时总数除以你们几个的乘积,我该是几就是几。

批正则化:

 #批正则化
g1 = tf.contrib.layers.batch_norm(g1, epsilon=1e-5, scope='bn1')

 共享变量的应用之处:

之前看文档时体会不深,现在大体明白共享变量的存在意义了,它是在设计计算图时考虑的,同一个变量如果有不同的数据流(计算图中不同的节点在不同的时刻去给同一个节点的同一个输入位置提供数据),Variable变量会之间创建两个不同的变量节点去接收不同的数据流,get_variable变量在reuse为True时会使用同一个变量应付不同的数据流,这也就是共享变量的应用之处。这在上面的程序中体现在判别器的任务,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1。也就是说,fake图像和real图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制,而和正常的卷积网络不同的是这里的fake和real变量并不在同一个计算图节点位置(real图片在x节点处输入,而fake图则在生成器输出节点位置计入计算图)。

tensorflow学习6的更多相关文章

  1. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  2. 用tensorflow学习贝叶斯个性化排序(BPR)

    在贝叶斯个性化排序(BPR)算法小结中,我们对贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)的原理做了讨论,本文我们将从实践的角度来使用BPR做一个简 ...

  3. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  4. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  5. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  6. TensorFlow学习路径【转】

    作者:黄璞链接:https://www.zhihu.com/question/41667903/answer/109611087来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...

  7. TensorFlow学习线路

    如何高效的学习 TensorFlow 代码? 或者如何掌握TensorFlow,应用到任何领域? 作者:黄璞链接:https://www.zhihu.com/question/41667903/ans ...

  8. tensorflow学习资料

    tensorflow学习资料 http://www.soku.com/search_video/q_tensorflow?f=1&kb=04112020yv41000__&_rp=1a ...

  9. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  10. 截图:【炼数成金】深度学习框架Tensorflow学习与应用

    创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版 ...

随机推荐

  1. Nginx与安全体系架构

  2. 【叶问】 MySQL常用的sql调优手段或工具有哪些

     MySQL常用的sql调优手段或工具有哪些1.根据执行计划优化   通常使用desc或explain,另外可以添加format=json来输出更详细的json格式的执行计划,主要注意点如下:     ...

  3. 基于Kinetic框架实现超酷的风铃悬挂摆动效果

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/iefreer/article/details/37049987 在踏得网开发过程中,我们在引导页面中 ...

  4. Html-根据不同的分辨率设置不同的背景图片

    @media only screen and (min-width: 1024px)     //当分辨率width >= 1024px 时使用1.jpg作为背景图片 {             ...

  5. golang 中处理大规模tcp socket网络连接的方法,相当于c语言的 poll 或 epoll

    https://groups.google.com/forum/#!topic/golang-nuts/I7a_3B8_9Gw https://groups.google.com/forum/#!ms ...

  6. JAVA基础——时间Date类型转换

    在java中有六大时间类,分别是: 1.java.util包下的Date类, 2.java.sql包下的Date类, 3.java.text包下的DateFormat类,(抽象类) 4.java.te ...

  7. Spark SQL 函数全集

    org.apache.spark.sql.functions是一个Object,提供了约两百多个函数. 大部分函数与Hive的差不多. 除UDF函数,均可在spark-sql中直接使用. 经过impo ...

  8. CMB面试

    笔试: 1.登录验证userid password后台sql传入,有什么问题,预防措施? https://bbs.csdn.net/topics/120075716 2.cookie,session, ...

  9. 第二弹:超全Python学习资源整理(进阶系列)

    造一个草原要一株三叶草加一只蜜蜂.一株三叶草,一只蜂,再加一个梦.要是蜜蜂少,光靠梦也行. - 狄金森 "成为编程大牛要一门好语言加一点点天分.一门好语言,一点点天分,再加一份坚持.要是天分 ...

  10. c# 利用MailKit.IMap 收取163邮件

    最近我要做一个爬虫.这个爬虫需要如下几个步骤: 1 填写注册内容(需要邮箱注册) 2 过拖拽验证码(geetest) 3 注册成功会给邮箱发一封确认邮箱 4 点击确认邮箱中的链接 完成注册 我这里就采 ...