From: TensorFlow Object Detection API

This chapter help you to train your own model to identify objects required.

1. Data

1.1 Get your own data

  • 标准的范例,从ImageNet上获取数据集

Get your own data from ImageNet

Download tiny-imagenet-200.zip, which is smaller than original monster. (150G)

  • 图片格式转化

We need .png but not .jpg here, so

cd ./images
ls -1 *.jpg | xargs -n 1 bash -c 'convert "$0" "${0%.jpg}.png"'

1.2 Create your Annotation.

  • 获取标记记录

Sol 01: 

# 找数据集上现成的对应的标记框记录

Find its xml version from: http://image-net.org/download-bboxes

Sol 02:

# 自己写标记记录

Write script to create your xml for Annotation from *_box.txt. This is not a complex structure as following.

<annotation>
<folder>n02119789</folder>
<filename>n02119789_122</filename>
<source>
<database>ImageNet database</database>
</source>
<size>
<width>200</width>
<height>191</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>n02119789</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>17</xmin>
<ymin>16</ymin>
<xmax>181</xmax>
<ymax>181</ymax>
</bndbox>
</object>
</annotation>

Sol 03: 

# 通过工具辅助生成标记框记录

Label them manually. This is a crazy way to create your train data (100-500 images) if you have enough time.

sudo apt-get install pyqt5-dev-tools
sudo pip3 install lxml
git clone https://github.com/tzutalin/labelImg
unsw@unsw-UX303UB$ make qt5py3
unsw@unsw-UX303UB$ python3 labelImg.py

  • 完整的数据集

Finally, this is what we need.

  • .csv 格式的数据集

Similarly, we need .csv but not .xml here, so

Download: https://raw.githubusercontent.com/datitran/raccoon_dataset/master/xml_to_csv.py

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df def main():
image_path = os.path.join(os.getcwd(), 'annotations')
xml_df = xml_to_csv(image_path)
xml_df.to_csv('raccoon_labels.csv', index=None)
print('Successfully converted xml to csv.') main()

xml_to_csv.py

unsw@unsw-UX303UB$ python xml_to_csv.py
Successfully converted xml to csv.
unsw@unsw-UX303UB$ ls
annotations images Others raccoon_labels.csv xml_to_csv.py

This is final bounding box info.

2. Cascade Classifier Training


一、相关方案

Ref: https://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html

  • 接口

THE OPENCV TUTORIAL FOR TRAINING CASCADE CLASSIFIERS is a pretty good place to start. It explains the 2 binary utilities used in the process (opencv_createsamples and opencv_traincascade),

and all of their command line arguments and options, but it doesn’t really give an example of a flow to follow, nor does it explain all the possible uses for the opencv_createsamplesutility.

  • 方案一

On the other hand, NAOTOSHI SEO’S TUTORIAL is actually quite thorough and explains the 4 different uses for the opencv_createsamples utility.

THORSTEN BALL WROTE A TUTORIAL using Naotoshi Seo’s scripts to train a classifier to detect bananas, but it requires running some perl scripts and compiling some C++… too much work…

  • 方案二

Jeff also has some NICE NOTES about how he prepared his data, and a SCRIPT for automatically iterating over a couple of options for the 2 utilities.

The way we did it was inspired by all of these tutorials, with some minor modifications and optimizations.

二、Process

  • 是什么

Ref: https://processing.org/download/

一种语言,处理图像,提供了更为亲和的方式。

/* implement */

[Tensorflow] Object Detection API - prepare your training data的更多相关文章

  1. [Tensorflow] Object Detection API - build your training environment

    一.前期准备 Prepare protoc Download Protocol Buffers Create folder: protoc and unzip it. unsw@unsw-UX303U ...

  2. Tensorflow object detection API 搭建属于自己的物体识别模型

    一.下载Tensorflow object detection API工程源码 网址:https://github.com/tensorflow/models,可通过Git下载,打开Git Bash, ...

  3. [Tensorflow] Object Detection API - predict through your exclusive model

    开始预测 一.训练结果 From: Testing Custom Object Detector - TensorFlow Object Detection API Tutorial p.6 训练结果 ...

  4. TensorFlow object detection API应用

    前一篇讲述了TensorFlow object detection API的安装与配置,现在我们尝试用这个API搭建自己的目标检测模型. 一.准备数据集 本篇旨在人脸识别,在百度图片上下载了120张张 ...

  5. 使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器

    上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fet ...

  6. 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)

    前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...

  7. Install Tensorflow object detection API in Anaconda (Windows)

    This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as ...

  8. TensorFlow object detection API

    cloud执行:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pet ...

  9. Tensorflow object detection API 搭建物体识别模型(四)

    四.模型测试 1)下载文件 在已经阅读并且实践过前3篇文章的情况下,读者会有一些文件夹.因为每个读者的实际操作不同,则文件夹中的内容不同.为了保持本篇文章的独立性,制作了可以独立运行的文件夹目标检测. ...

随机推荐

  1. C++学习笔记42:进程管理

    子进程异步清除 SIGCHLD信号:子进程终止时,向父进程自动发送,编写此信号处理例程,异步清除子进程 #include <signal.h> #include <string.h& ...

  2. Redis管道理解

    Redis管道理解 简介 管道并不是Redis本身提供的功能,通常是客户端提供的功能: 管道就是打包多条无关命令批量执行,以减少多个命令分别执行消耗的网络交互时间(TCP网络交互),可以显著提升Red ...

  3. JSON数据之使用Fastjson进行解析(一)

    据说FastJson是目前最快的解析Json数据的库,而且是国人开发出来的开源库.顶一下,付上官方网址:http://code.alibabatech.com/wiki/pages/viewpage. ...

  4. LM && NTLM && ophcrack && RainBow table

    Windows密码的加密方式:Windows 主要使用以下两种(包含但不限于)算法对用户名和密码进行加密:分 别是LanManager(LM)和NTLM,LM只能存储小于等于14个字符的密码hash, ...

  5. Android四大组件应用系列——Activity与Service交互实现APK下载

    Servic与Activity相比它没有界面,主要是在后台执行一些任务,Service有两种启动方法startService()和bindService(),startService方式Service ...

  6. 版本控制-git(二)

    上次文章给大家介绍了Git的一些基本知识(http://www.cnblogs.com/jerehedu/p/4582398.html),并介绍了使用git init初始化化版本库,使用git add ...

  7. WPF背景图

    方法一:xaml中:<控件>  <控件.Background><ImageBrush ImageSource="/程序集;component/images/xx ...

  8. 设置nginx和php-fpm更改上传文件大小限制

    Nginx和php默认不支持上传过大的文件.假如我们要求上传的文件大小为20M,默认配置就不允许上传了. 下面我们更改nginx和php配置,设定上传的限制为20M. Nginx配置更改 如果上传文件 ...

  9. 关于redis性能问题分析和优化

    一.如何查看Redis性能 info命令输出的数据可以分为10个分类,分别是: server,clients,memory,persistence,stats,replication,cpu,comm ...

  10. 基于CentOS搭建VNC远程桌面服务

    系统要求:CentOS 7.2 64 位操作系统 安装.启动 VNC VNC 远程桌面原理 名词解释: Xorg:在 Linux 用户中非常流行,已经成为图形用户程序的必备条件,所以大部分发行版都提供 ...