From: TensorFlow Object Detection API

This chapter help you to train your own model to identify objects required.

1. Data

1.1 Get your own data

  • 标准的范例,从ImageNet上获取数据集

Get your own data from ImageNet

Download tiny-imagenet-200.zip, which is smaller than original monster. (150G)

  • 图片格式转化

We need .png but not .jpg here, so

cd ./images
ls -1 *.jpg | xargs -n 1 bash -c 'convert "$0" "${0%.jpg}.png"'

1.2 Create your Annotation.

  • 获取标记记录

Sol 01: 

# 找数据集上现成的对应的标记框记录

Find its xml version from: http://image-net.org/download-bboxes

Sol 02:

# 自己写标记记录

Write script to create your xml for Annotation from *_box.txt. This is not a complex structure as following.

<annotation>
<folder>n02119789</folder>
<filename>n02119789_122</filename>
<source>
<database>ImageNet database</database>
</source>
<size>
<width>200</width>
<height>191</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>n02119789</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>17</xmin>
<ymin>16</ymin>
<xmax>181</xmax>
<ymax>181</ymax>
</bndbox>
</object>
</annotation>

Sol 03: 

# 通过工具辅助生成标记框记录

Label them manually. This is a crazy way to create your train data (100-500 images) if you have enough time.

sudo apt-get install pyqt5-dev-tools
sudo pip3 install lxml
git clone https://github.com/tzutalin/labelImg
unsw@unsw-UX303UB$ make qt5py3
unsw@unsw-UX303UB$ python3 labelImg.py

  • 完整的数据集

Finally, this is what we need.

  • .csv 格式的数据集

Similarly, we need .csv but not .xml here, so

Download: https://raw.githubusercontent.com/datitran/raccoon_dataset/master/xml_to_csv.py

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df def main():
image_path = os.path.join(os.getcwd(), 'annotations')
xml_df = xml_to_csv(image_path)
xml_df.to_csv('raccoon_labels.csv', index=None)
print('Successfully converted xml to csv.') main()

xml_to_csv.py

unsw@unsw-UX303UB$ python xml_to_csv.py
Successfully converted xml to csv.
unsw@unsw-UX303UB$ ls
annotations images Others raccoon_labels.csv xml_to_csv.py

This is final bounding box info.

2. Cascade Classifier Training


一、相关方案

Ref: https://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html

  • 接口

THE OPENCV TUTORIAL FOR TRAINING CASCADE CLASSIFIERS is a pretty good place to start. It explains the 2 binary utilities used in the process (opencv_createsamples and opencv_traincascade),

and all of their command line arguments and options, but it doesn’t really give an example of a flow to follow, nor does it explain all the possible uses for the opencv_createsamplesutility.

  • 方案一

On the other hand, NAOTOSHI SEO’S TUTORIAL is actually quite thorough and explains the 4 different uses for the opencv_createsamples utility.

THORSTEN BALL WROTE A TUTORIAL using Naotoshi Seo’s scripts to train a classifier to detect bananas, but it requires running some perl scripts and compiling some C++… too much work…

  • 方案二

Jeff also has some NICE NOTES about how he prepared his data, and a SCRIPT for automatically iterating over a couple of options for the 2 utilities.

The way we did it was inspired by all of these tutorials, with some minor modifications and optimizations.

二、Process

  • 是什么

Ref: https://processing.org/download/

一种语言,处理图像,提供了更为亲和的方式。

/* implement */

[Tensorflow] Object Detection API - prepare your training data的更多相关文章

  1. [Tensorflow] Object Detection API - build your training environment

    一.前期准备 Prepare protoc Download Protocol Buffers Create folder: protoc and unzip it. unsw@unsw-UX303U ...

  2. Tensorflow object detection API 搭建属于自己的物体识别模型

    一.下载Tensorflow object detection API工程源码 网址:https://github.com/tensorflow/models,可通过Git下载,打开Git Bash, ...

  3. [Tensorflow] Object Detection API - predict through your exclusive model

    开始预测 一.训练结果 From: Testing Custom Object Detector - TensorFlow Object Detection API Tutorial p.6 训练结果 ...

  4. TensorFlow object detection API应用

    前一篇讲述了TensorFlow object detection API的安装与配置,现在我们尝试用这个API搭建自己的目标检测模型. 一.准备数据集 本篇旨在人脸识别,在百度图片上下载了120张张 ...

  5. 使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器

    上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fet ...

  6. 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)

    前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...

  7. Install Tensorflow object detection API in Anaconda (Windows)

    This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as ...

  8. TensorFlow object detection API

    cloud执行:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pet ...

  9. Tensorflow object detection API 搭建物体识别模型(四)

    四.模型测试 1)下载文件 在已经阅读并且实践过前3篇文章的情况下,读者会有一些文件夹.因为每个读者的实际操作不同,则文件夹中的内容不同.为了保持本篇文章的独立性,制作了可以独立运行的文件夹目标检测. ...

随机推荐

  1. MYSQL时间类别总结: TIMESTAMP、DATETIME、DATE、TIME、YEAR

    总结背景: 对于MYSQL数据库日期类型或多有了解, 但并很清晰其中一些规则. 基本都是面向浏览器编码, 这实质上也是一种方式.  但期间遇到两个问题: 时常遇到建表中出现多个datetime或者ti ...

  2. 简单的proxy之TinyHTTPProxy.py

    简单的proxy之TinyHTTPProxy.py 如果是在外企工作的话,可以访问美国的机器,这样就可以在美国的机器上为自己装个proxy,然后本地就可以很容易的使用proxy来上网了. TinyHT ...

  3. php实现查询上传文件进度

    参考:http://www.ultramegatech.com/2010/10/create-an-upload-progress-bar-with-php-and-jquery/ 11OCT/108 ...

  4. C#编程(八十二)---------- 用户自定义异常类

    用户自定义异常类 前面已经说了不少关于异常的问题了,现在来给大家说一下自定义异常时咋个回事以及咋样. 为啥会出现自定义异常类呢?用用脚趾头想想也明白,是为了定义咱们自己的异常,自定义异常类继承自App ...

  5. Java中部分常见语法糖

    语法糖(Syntactic Sugar),也称糖衣语法,指在计算机语言中添加的某种语法,这种语法对语言本身功能来说没有什么影响,只是为了方便程序员的开发,提高开发效率.说白了,语法糖就是对现有语法的一 ...

  6. oracle11g-linux 归档处理

    在使用oracle时突然登录不上去了提示:ORA-00257:archiver error.Connect internal only,until freed. 查遍很多资料,都指向“归档日志空间不足 ...

  7. Global Mapper如何加载在线地图

    Global Mapper是一个比较好用的GIS数据处理软件,官网:http://www.bluemarblegeo.com/products/global-mapper.php ,除使用ArcGIS ...

  8. grep 多行 正则匹配

    https://stackoverflow.com/questions/2686147/how-to-find-patterns-across-multiple-lines-using-grep I ...

  9. list与Set、Map区别及适用场景

    1.List,Set都是继承自Collection接口,Map则不是 2.List特点: 元素有放入顺序,元素可重复 ,Set特点:元素无放入顺序,元素不可重复,重复元素会覆盖掉,(注意:元素虽然无放 ...

  10. eclipse alt+/智能提示错误问题

    转自: https://blog.csdn.net/u013066244/article/details/69054447