From: TensorFlow Object Detection API

This chapter help you to train your own model to identify objects required.

1. Data

1.1 Get your own data

  • 标准的范例,从ImageNet上获取数据集

Get your own data from ImageNet

Download tiny-imagenet-200.zip, which is smaller than original monster. (150G)

  • 图片格式转化

We need .png but not .jpg here, so

cd ./images
ls -1 *.jpg | xargs -n 1 bash -c 'convert "$0" "${0%.jpg}.png"'

1.2 Create your Annotation.

  • 获取标记记录

Sol 01: 

# 找数据集上现成的对应的标记框记录

Find its xml version from: http://image-net.org/download-bboxes

Sol 02:

# 自己写标记记录

Write script to create your xml for Annotation from *_box.txt. This is not a complex structure as following.

<annotation>
<folder>n02119789</folder>
<filename>n02119789_122</filename>
<source>
<database>ImageNet database</database>
</source>
<size>
<width>200</width>
<height>191</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>n02119789</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>17</xmin>
<ymin>16</ymin>
<xmax>181</xmax>
<ymax>181</ymax>
</bndbox>
</object>
</annotation>

Sol 03: 

# 通过工具辅助生成标记框记录

Label them manually. This is a crazy way to create your train data (100-500 images) if you have enough time.

sudo apt-get install pyqt5-dev-tools
sudo pip3 install lxml
git clone https://github.com/tzutalin/labelImg
unsw@unsw-UX303UB$ make qt5py3
unsw@unsw-UX303UB$ python3 labelImg.py

  • 完整的数据集

Finally, this is what we need.

  • .csv 格式的数据集

Similarly, we need .csv but not .xml here, so

Download: https://raw.githubusercontent.com/datitran/raccoon_dataset/master/xml_to_csv.py

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df def main():
image_path = os.path.join(os.getcwd(), 'annotations')
xml_df = xml_to_csv(image_path)
xml_df.to_csv('raccoon_labels.csv', index=None)
print('Successfully converted xml to csv.') main()

xml_to_csv.py

unsw@unsw-UX303UB$ python xml_to_csv.py
Successfully converted xml to csv.
unsw@unsw-UX303UB$ ls
annotations images Others raccoon_labels.csv xml_to_csv.py

This is final bounding box info.

2. Cascade Classifier Training


一、相关方案

Ref: https://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html

  • 接口

THE OPENCV TUTORIAL FOR TRAINING CASCADE CLASSIFIERS is a pretty good place to start. It explains the 2 binary utilities used in the process (opencv_createsamples and opencv_traincascade),

and all of their command line arguments and options, but it doesn’t really give an example of a flow to follow, nor does it explain all the possible uses for the opencv_createsamplesutility.

  • 方案一

On the other hand, NAOTOSHI SEO’S TUTORIAL is actually quite thorough and explains the 4 different uses for the opencv_createsamples utility.

THORSTEN BALL WROTE A TUTORIAL using Naotoshi Seo’s scripts to train a classifier to detect bananas, but it requires running some perl scripts and compiling some C++… too much work…

  • 方案二

Jeff also has some NICE NOTES about how he prepared his data, and a SCRIPT for automatically iterating over a couple of options for the 2 utilities.

The way we did it was inspired by all of these tutorials, with some minor modifications and optimizations.

二、Process

  • 是什么

Ref: https://processing.org/download/

一种语言,处理图像,提供了更为亲和的方式。

/* implement */

[Tensorflow] Object Detection API - prepare your training data的更多相关文章

  1. [Tensorflow] Object Detection API - build your training environment

    一.前期准备 Prepare protoc Download Protocol Buffers Create folder: protoc and unzip it. unsw@unsw-UX303U ...

  2. Tensorflow object detection API 搭建属于自己的物体识别模型

    一.下载Tensorflow object detection API工程源码 网址:https://github.com/tensorflow/models,可通过Git下载,打开Git Bash, ...

  3. [Tensorflow] Object Detection API - predict through your exclusive model

    开始预测 一.训练结果 From: Testing Custom Object Detector - TensorFlow Object Detection API Tutorial p.6 训练结果 ...

  4. TensorFlow object detection API应用

    前一篇讲述了TensorFlow object detection API的安装与配置,现在我们尝试用这个API搭建自己的目标检测模型. 一.准备数据集 本篇旨在人脸识别,在百度图片上下载了120张张 ...

  5. 使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器

    上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fet ...

  6. 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)

    前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...

  7. Install Tensorflow object detection API in Anaconda (Windows)

    This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as ...

  8. TensorFlow object detection API

    cloud执行:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pet ...

  9. Tensorflow object detection API 搭建物体识别模型(四)

    四.模型测试 1)下载文件 在已经阅读并且实践过前3篇文章的情况下,读者会有一些文件夹.因为每个读者的实际操作不同,则文件夹中的内容不同.为了保持本篇文章的独立性,制作了可以独立运行的文件夹目标检测. ...

随机推荐

  1. Git问题Everything up-to-date解决

    Git问题Everything up-to-date解决 [自己的亲身错误体验] 我的上一篇博客,说了怎么上传一个项目到git远程上面.今天我写好一个小栗子,准备再次上传的时候.我依旧是放在我的F:\ ...

  2. mysql week 的使用方法

    mysql week 的使用方法,详情请看: https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function ...

  3. LeetCode全文解锁 √

    分享一波大牛整理leetcode,方便整理思路 可以点击下载

  4. 大文件拆分方案的java实践(附源码)

    引子 大文件拆分问题涉及到io处理.并发编程.生产者/消费者模式的理解,是一个很好的综合应用场景,为此,花点时间做一些实践,对相关的知识做一次梳理和集成,总结一些共性的处理方案和思路,以供后续工作中借 ...

  5. CDH:cdh5环境搭建

    安装环境三台centos7 vmw: cdh- 192.168.0.141 [主节点] cdh- 192.168.0.142 [从节点] cdh- 192.168.0.143 [从节点] 1)[各节点 ...

  6. Using std::map with a custom class key

    From: https://www.walletfox.com/course/mapwithcustomclasskey.php If you have ever tried to use a cus ...

  7. 使用vue.js路由踩到的一个坑Unknown custom element

    在配合require.js使用vue路由的时候,遇到了路由组件报错: “vue.js:597 [Vue warn]: Unknown custom element: <router-link&g ...

  8. ROS actionlib学习(三)

    下面这个例子将展示用actionlib来计算随机变量的均值和标准差.首先在action文件中定义goal.result和feedback的数据类型,其中goal为样本容量,result为均值和标准差, ...

  9. eclipse alt+/智能提示错误问题

    转自: https://blog.csdn.net/u013066244/article/details/69054447

  10. python实现模拟登录

    本文主要用python实现了对网站的模拟登录.通过自己构造post数据来用Python实现登录过程.   当你要模拟登录一个网站时,首先要搞清楚网站的登录处理细节(发了什么样的数据,给谁发等...). ...