[Tensorflow] Object Detection API - prepare your training data
From: TensorFlow Object Detection API
This chapter help you to train your own model to identify objects required.
1. Data
1.1 Get your own data
- 标准的范例,从ImageNet上获取数据集
Get your own data from ImageNet
Download tiny-imagenet-200.zip, which is smaller than original monster. (150G)

- 图片格式转化
We need .png but not .jpg here, so
cd ./images
ls -1 *.jpg | xargs -n 1 bash -c 'convert "$0" "${0%.jpg}.png"'
1.2 Create your Annotation.
- 获取标记记录
Sol 01:
# 找数据集上现成的对应的标记框记录
Find its xml version from: http://image-net.org/download-bboxes


Sol 02:
# 自己写标记记录
Write script to create your xml for Annotation from *_box.txt. This is not a complex structure as following.
<annotation>
<folder>n02119789</folder>
<filename>n02119789_122</filename>
<source>
<database>ImageNet database</database>
</source>
<size>
<width>200</width>
<height>191</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>n02119789</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>17</xmin>
<ymin>16</ymin>
<xmax>181</xmax>
<ymax>181</ymax>
</bndbox>
</object>
</annotation>
Sol 03:
# 通过工具辅助生成标记框记录
Label them manually. This is a crazy way to create your train data (100-500 images) if you have enough time.
sudo apt-get install pyqt5-dev-tools
sudo pip3 install lxml
git clone https://github.com/tzutalin/labelImg
unsw@unsw-UX303UB$ make qt5py3
unsw@unsw-UX303UB$ python3 labelImg.py

- 完整的数据集
Finally, this is what we need.

- .csv 格式的数据集
Similarly, we need .csv but not .xml here, so
Download: https://raw.githubusercontent.com/datitran/raccoon_dataset/master/xml_to_csv.py
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df def main():
image_path = os.path.join(os.getcwd(), 'annotations')
xml_df = xml_to_csv(image_path)
xml_df.to_csv('raccoon_labels.csv', index=None)
print('Successfully converted xml to csv.') main()
xml_to_csv.py
unsw@unsw-UX303UB$ python xml_to_csv.py
Successfully converted xml to csv.
unsw@unsw-UX303UB$ ls
annotations images Others raccoon_labels.csv xml_to_csv.py
This is final bounding box info.

2. Cascade Classifier Training
一、相关方案
Ref: https://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html
- 接口
THE OPENCV TUTORIAL FOR TRAINING CASCADE CLASSIFIERS is a pretty good place to start. It explains the 2 binary utilities used in the process (opencv_createsamples and opencv_traincascade),
and all of their command line arguments and options, but it doesn’t really give an example of a flow to follow, nor does it explain all the possible uses for the opencv_createsamplesutility.
- 方案一
On the other hand, NAOTOSHI SEO’S TUTORIAL is actually quite thorough and explains the 4 different uses for the opencv_createsamples utility.
THORSTEN BALL WROTE A TUTORIAL using Naotoshi Seo’s scripts to train a classifier to detect bananas, but it requires running some perl scripts and compiling some C++… too much work…
- 方案二
Jeff also has some NICE NOTES about how he prepared his data, and a SCRIPT for automatically iterating over a couple of options for the 2 utilities.
The way we did it was inspired by all of these tutorials, with some minor modifications and optimizations.
二、Process
- 是什么
Ref: https://processing.org/download/
一种语言,处理图像,提供了更为亲和的方式。
/* implement */
[Tensorflow] Object Detection API - prepare your training data的更多相关文章
- [Tensorflow] Object Detection API - build your training environment
一.前期准备 Prepare protoc Download Protocol Buffers Create folder: protoc and unzip it. unsw@unsw-UX303U ...
- Tensorflow object detection API 搭建属于自己的物体识别模型
一.下载Tensorflow object detection API工程源码 网址:https://github.com/tensorflow/models,可通过Git下载,打开Git Bash, ...
- [Tensorflow] Object Detection API - predict through your exclusive model
开始预测 一.训练结果 From: Testing Custom Object Detector - TensorFlow Object Detection API Tutorial p.6 训练结果 ...
- TensorFlow object detection API应用
前一篇讲述了TensorFlow object detection API的安装与配置,现在我们尝试用这个API搭建自己的目标检测模型. 一.准备数据集 本篇旨在人脸识别,在百度图片上下载了120张张 ...
- 使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器
上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fet ...
- 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)
前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...
- Install Tensorflow object detection API in Anaconda (Windows)
This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as ...
- TensorFlow object detection API
cloud执行:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pet ...
- Tensorflow object detection API 搭建物体识别模型(四)
四.模型测试 1)下载文件 在已经阅读并且实践过前3篇文章的情况下,读者会有一些文件夹.因为每个读者的实际操作不同,则文件夹中的内容不同.为了保持本篇文章的独立性,制作了可以独立运行的文件夹目标检测. ...
随机推荐
- Git问题Everything up-to-date解决
Git问题Everything up-to-date解决 [自己的亲身错误体验] 我的上一篇博客,说了怎么上传一个项目到git远程上面.今天我写好一个小栗子,准备再次上传的时候.我依旧是放在我的F:\ ...
- mysql week 的使用方法
mysql week 的使用方法,详情请看: https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function ...
- LeetCode全文解锁 √
分享一波大牛整理leetcode,方便整理思路 可以点击下载
- 大文件拆分方案的java实践(附源码)
引子 大文件拆分问题涉及到io处理.并发编程.生产者/消费者模式的理解,是一个很好的综合应用场景,为此,花点时间做一些实践,对相关的知识做一次梳理和集成,总结一些共性的处理方案和思路,以供后续工作中借 ...
- CDH:cdh5环境搭建
安装环境三台centos7 vmw: cdh- 192.168.0.141 [主节点] cdh- 192.168.0.142 [从节点] cdh- 192.168.0.143 [从节点] 1)[各节点 ...
- Using std::map with a custom class key
From: https://www.walletfox.com/course/mapwithcustomclasskey.php If you have ever tried to use a cus ...
- 使用vue.js路由踩到的一个坑Unknown custom element
在配合require.js使用vue路由的时候,遇到了路由组件报错: “vue.js:597 [Vue warn]: Unknown custom element: <router-link&g ...
- ROS actionlib学习(三)
下面这个例子将展示用actionlib来计算随机变量的均值和标准差.首先在action文件中定义goal.result和feedback的数据类型,其中goal为样本容量,result为均值和标准差, ...
- eclipse alt+/智能提示错误问题
转自: https://blog.csdn.net/u013066244/article/details/69054447
- python实现模拟登录
本文主要用python实现了对网站的模拟登录.通过自己构造post数据来用Python实现登录过程. 当你要模拟登录一个网站时,首先要搞清楚网站的登录处理细节(发了什么样的数据,给谁发等...). ...