P4721【模板】分治 FFT
瞎扯
虽然说是FFT但是还是写了一发NTT(笑)
然后忘了IDFT之后要除个n懵逼了好久
以及递归的时候忘了边界无限RE
思路
朴素算法
分治FFT
考虑到题目要求求这样的一个式子
\]
我们可以按定义暴力,然后再松式卡常(不是)
我们可以发现它长得像一个卷积一样,但是因为后面的f值会依赖与前面的f值,所以没法一遍FFT直接求出结果,而对每个f都跑一遍FFT太慢了,我们使用分治优化这个过程就很优秀了,复杂度是\(O(n\log^2 n)\)
分治优化
我们能够想到cdq分治的思想,在统计一个区间时,确保对这个区间有影响的操作产生的贡献已经全被统计,就是先统计[l,mid]区间对[mid+1,r]区间的贡献
然后发现对于每个\(f_x\),它对后面的\(f_i\)产生的贡献是\(\Sigma_{j=l}^{mid} f_{i}g_{i-j}\)
然后分治就好
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MOD = 998244353,G=3,invG=332748118;
int a[200000],b[200000],f[200000],g[200000],n;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void FFT(int *a,int opt,int n){
int lim=0;
while((1<<lim)<n)
lim++;
for(int i=0;i<n;i++){
int t=0;
for(int j=0;j<lim;j++)
if((i>>j)&1)
t|=(1<<(lim-j-1));
if(i<t)
swap(a[i],a[t]);
}
for(int i=2;i<=n;i<<=1){
int len=i/2;
int tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int arr=1;
for(int k=j;k<len+j;k++){
int t=arr*a[k+len];
a[k+len]=((a[k]-t)%MOD+MOD)%MOD;
a[k]=(a[k]+t)%MOD;
arr=(arr*tmp)%MOD;
}
}
}
if(opt==0){
int invt=pow(n,MOD-2);
for(int i=0;i<n;i++)
a[i]=a[i]*invt%MOD;
}
}
void solve(int l,int r){
if(r-l==1)
return;
int t=pow(r-l,MOD-2);
int mid=(l+r)>>1;
solve(l,mid);
memset(a+(r-l)/2,0,sizeof(int)*(r-l)/2);
memcpy(a,f+l,sizeof(int)*(r-l)/2);
memcpy(b,g,sizeof(int)*(r-l));
FFT(a,1,r-l);
FFT(b,1,r-l);
for(int i=0;i<r-l;i++)
a[i]=(a[i]*b[i])%MOD;
FFT(a,0,r-l);
for(int i=(r-l)/2;i<r-l;i++)
f[l+i]=(f[l+i]+a[i])%MOD;
solve(mid,r);
}
signed main(){
int mid;
scanf("%lld",&n);
mid=n;
for(int i=1;i<=n-1;i++)
scanf("%lld",&g[i]);
int t=1;
while(t<n)
t<<=1;
n=t;
f[0]=1;
solve(0,n);
for(int i=0;i<mid;i++)
printf("%lld ",f[i]);
return 0;
}
P4721【模板】分治 FFT的更多相关文章
- 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...
- 洛谷.4721.[模板]分治FFT(NTT)
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...
- 解题:洛谷4721 [模板]分治FFT
题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include< ...
- 洛谷 P4721 【模板】分治 FFT 解题报告
P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\d ...
- [洛谷P4721]【模板】分治 FFT
题目大意:给定长度为$n-1$的数组$g_{[1,n)}$,求$f_{[0,n)}$,要求: $$f_i=\sum_{j=1}^if_{i-j}g_j\\f_0=1$$ 题解:直接求复杂度是$O(n^ ...
- 洛谷P4721 【模板】分治 FFT(分治FFT)
传送门 多项式求逆的解法看这里 我们考虑用分治 假设现在已经求出了$[l,mid]$的答案,要计算他们对$[mid+1,r]$的答案的影响 那么对右边部分的点$f_x$的影响就是$f_x+=\sum_ ...
- 洛谷P4721 【模板】分治 FFT(生成函数+多项式求逆)
传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x) ...
- [题解] Luogu P4721 【模板】分治 FFT
分治FFT的板子为什么要求逆呢 传送门 这个想法有点\(cdq\)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和\(g\)卷积一下,这样就可以算 ...
- luoguP4721 【模板】分治 FFT
P4721 [模板]分治 FFT 链接 luogu 题目描述 给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其 ...
随机推荐
- 取n的第k位
实例二:取n的第k位 方法:a>> k & 1 某值a右移K位后与整数“1”进行与运算.即把需要第几位就右移几位. 例子: 0000 1000 ------8右移3位 0000 0 ...
- Spring Cloud 服务的注册与发现(Eureka)
Eureka服务注册中心 一.Eureka Server Eureka Server是服务的注册中心,这是分布式服务的基础,我们看看这一部分如何搭建. 首先,Spring Cloud是基于Spring ...
- Keras中使用LSTM层时设置的units参数是什么
https://www.zhihu.com/question/64470274 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ ht ...
- poj2987 求最大权闭合回路
建图差不多和以前做的差不多,就是最后询问这个闭合子图有多少个的时候,只要输出这个图的S集合,就是进行dfs能遍历到的点一定在S集合中,不能遍历到的点在T集合中 #include <iostrea ...
- WebConfig类
package com.ssm.yjblogs.config; import java.util.ArrayList; import java.util.List; import java.util. ...
- c# 制作弹窗
1.右键选择添加,添加windows窗体 2.添加第几个窗体这就是Form几 3.具现化 窗口,然后调用 具现化窗口名+ShowDialog 就可以弹出新的窗口 这个功能需要使用,自己 ...
- STM32 定时器级联
根据参考手册给出的主/ 从定时器的例子 其实就是主定时器产生一个触发信号,让从定时器去接收这个触发信号,通过这个触发信号来让从定时器工作. 下面我们来看看我设置的从定时器 只需要配置 TIMx-> ...
- Linux基础命令---修改用户信息usermod
usermod 修改用户的信息,包括用户名.密码.家目录.uid等. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法 use ...
- 自写Jquery插件 Tab
原创文章,转载请注明出处,谢谢!https://www.cnblogs.com/GaoAnLee/p/9067017.html 每每看到别人写的Jquery插件,自己也试着学习尝试,终有结果,废话不多 ...
- P4577 [FJOI2018]领导集团问题
P4577 [FJOI2018]领导集团问题 我们对整棵树进行dfs遍历,并用一个multiset维护对于每个点,它的子树可取的最大点集. 我们遍历到点$u$时: 不选点$u$,显然答案就为它的所有子 ...