【codevs1282】约瑟夫问题
题目描述
有编号从1到N的N个小朋友在玩一种出圈的游戏。开始时N个小朋友围成一圈,编号为I+1的小朋友站在编号为I小朋友左边。编号为1的小朋友站在编号为N的小朋友左边。首先编号为1的小朋友开始报数,接着站在左边的小朋友顺序报数,直到数到某个数字M时就出圈。直到只剩下1个小朋友,则游戏完毕。
现在给定N,M,求N个小朋友的出圈顺序。
唯一的一行包含两个整数N,M。(1<=N,M<=30000)
唯一的一行包含N个整数,每两个整数中间用空格隔开,第I个整数表示第I个出圈的小朋友的编号。
5 3
样例输出
3 1 5 2 4
很好想的一道题,就是求出每次需要出圈的人的排名,然后输出并删除。
然而N为30000怎么办?
网上的题解是线段树,然而线段树不能删除,过于麻烦。
于是想到Treap。
代码有点长,但很好理解。
需要注意rn是上次的排名,但是这次第一个人的排名却应该与rn相同,因为已经减少一个人,对应排名-1。
因此rn初始值为1。
#include <cstdio>
#include <cstdlib>
#include <algorithm>
using namespace std;
int l[30001] , r[30001] , num[30001] , si[30001] , rnd[30001] , tot , root;
void pushup(int k)
{
si[k] = si[l[k]] + si[r[k]] + 1;
}
void zig(int &k)
{
int t = l[k];
l[k] = r[t];
r[t] = k;
si[t] = si[k];
pushup(k);
k = t;
}
void zag(int &k)
{
int t = r[k];
r[k] = l[t];
l[t] = k;
si[t] = si[k];
pushup(k);
k = t;
}
void ins(int &k , int x)
{
if(!k)
{
k = ++tot;
num[k] = x;
si[k] = 1;
rnd[k] = rand();
return;
}
si[k] ++ ;
if(x < num[k])
{
ins(l[k] , x);
if(rnd[l[k]] < rnd[k])
zig(k);
}
else
{
ins(r[k] , x);
if(rnd[r[k]] < rnd[k])
zag(k);
}
}
void del(int &k , int x)
{
if(!k) return;
if(x == num[k])
{
if(l[k] * r[k] == 0)
k = l[k] + r[k];
else if(rnd[l[k]] < rnd[r[k]])
zig(k) , del(k , x);
else
zag(k) , del(k , x);
}
else if(x < num[k])
si[k] -- , del(l[k] , x);
else
si[k] -- , del(r[k] , x);
}
int getrank(int k , int x)
{
if(x == num[k]) return si[l[x]] + 1;
else if(x < num[k]) return getrank(l[k] , x);
else return getrank(r[k] , x) + si[l[x]] + 1;
}
int find(int k , int x)
{
if(x <= si[l[k]]) return find(l[k] , x);
else if(x > si[l[k]] + 1) return find(r[k] , x - si[l[k]] - 1);
else return num[k];
}
int main()
{
int n , m , i , rn = 1 , c;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
ins(root , i);
for(i = 1 ; i <= n ; i ++ )
{
rn = (rn + m - 2 + si[root]) % si[root] + 1;
c = find(root , rn);
printf("%d " , c);
del(root , c);
}
printf("\n");
return 0;
}
【codevs1282】约瑟夫问题的更多相关文章
- 【codevs1282】约瑟夫问题 Treap
题目描述 有编号从1到N的N个小朋友在玩一种出圈的游戏.开始时N个小朋友围成一圈,编号为I+1的小朋友站在编号为I小朋友左边.编号为1的小朋友站在编号为N的小朋友左边.首先编号为1的小朋友开始报数,接 ...
- 约瑟夫问题(java实现)
方法一.自定义的链表实现 package com.code.yuesefu; public class YueSeFuList { public static void main(String[] a ...
- Java 解决约瑟夫问题
约瑟夫问题(有时也称为约瑟夫斯置换,是一个出现在计算机科学和数学中的问题.在计算机编程的算法中,类似问题又称为约瑟夫环.又称“丢手绢问题”.) 有这样一个故事,15个教徒和15个非教徒在深海遇险必须讲 ...
- C#实现约瑟夫环问题
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace orde ...
- C语言数组实现约瑟夫环问题,以及对其进行时间复杂度分析
尝试表达 本人试着去表达约瑟夫环问题:一群人围成一个圈,作这样的一个游戏,选定一个人作起点以及数数的方向,这个人先数1,到下一个人数2,直到数到游戏规则约定那个数的人,比如是3,数到3的那个人就离开这 ...
- C语言链表实现约瑟夫环问题
需求表达:略 分析: 实现: #include<stdio.h> #include<stdlib.h> typedef struct node { int payload ; ...
- AC日记——约瑟夫问题 codevs 1282
1282 约瑟夫问题 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果 题目描述 Description 有编号从1到N的N个小 ...
- Have Fun with Numbers及循环链表(约瑟夫问题)
1. 循环链表(约瑟夫问题) https://github.com/BodhiXing/Data_Structure 2. Have Fun with Numbers https://pta.pate ...
- javascript中使用循环链表实现约瑟夫环问题
1.问题 传说在公元1 世纪的犹太战争中,犹太历史学家弗拉维奥·约瑟夫斯和他的40 个同胞被罗马士兵包围.犹太士兵决定宁可自杀也不做俘虏,于是商量出了一个自杀方案.他们围成一个圈,从一个人开始,数到第 ...
随机推荐
- everything + autohotkey的配合使用
一,everything是文件搜索神奇,瞬间定位到文件,在众多的文件中找到你需要的文件.(百度下载就好,分32位和64位) 二,autohotkey是热键启动设置,方便的打开常用的应用. 直接使用 ...
- 原生Ajax
使用原生Ajax 验证用户名是否被注册 创建出注册信息: <h1>注册信息</h1><input type="text" name="txt ...
- transient关键字的作用
代码如下: import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutpu ...
- C++ 运算符重载时,将运算符两边对象交换问题.
在C++进行运算符重载时, 一般来讲,运算符两边的对象的顺序是不能交换的. 比如下面的例子: #include <iostream> using namespace std; class ...
- Hibernate 中出现表名(XXX) is not mapped 问题
今天晚上自己试着用Hibernate去搭建一个Web工程,然后去实现一个简单的登录.通过Hibernate?做查询操作的时候总是报出这样的错:users is?not?mapped. 于是乎去检查了下 ...
- [LeetCode] Transpose File 转置文件
Given a text file file.txt, transpose its content. You may assume that each row has the same number ...
- 调用altera IP核的仿真流程—上
调用altera IP核的仿真流程—上 在学习本节内容之后,请详细阅读<基于modelsim-SE的简单仿真流程>,因为本节是基于<基于modelsim-SE的简单仿真流程>的 ...
- C# Winform代码片段-大二下学期的垃圾代码
1.图片缩放 using System; using System.Windows.Forms; using System.Drawing; class haha : Form { static vo ...
- 使用SharpPCap在C#下进行网络抓包
在做大学最后的毕业设计了,无线局域网络远程安全监控策略那么抓包是这个系统设计的基础以前一直都是知道用winpcap的,现在网上搜了一下,有用C#封装好了的,很好用下面是其中的几个用法这个类库作者的主页 ...
- hibernate通过注解实现实体和表的映射
参考: 表名的映射: //代表此类参与ORM映射,此注解必须要有 @Entity //代表user这个类映射了一个表user50,如果表名和类名一样,此注解可以省略 @Table(name=" ...