[BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树

题目大意:

给定一个\(n(n\le50)\)个点,\(m(m\le1000)\)条边的带权无向图,每条边的边权为\(w_i(w_i\le50)\)。求最小方差生成树。

3080数据范围:\(n\le50,m\le1000,w_i\le50\);

3754数据范围:\(n\le100,m\le1000,w_i\le100\)。

其中3754询问的是最小标准差。

思路:

由于\(w_i\)很小,因此我们可以枚举树上的边权和\(\sum w_i\),以\((w_i-\bar w)^2\)为新的边权做最小生成树。若最后树上的\(\sum w_i=\)一开始枚举的值,那么就更新答案。

源代码(3080):

#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=51,M=1001;
double d;
inline double sqr(const double &x) {
return x*x;
}
struct Edge {
int u,v,w;
bool operator < (const Edge &rhs) const {
return sqr(w-d)<sqr(rhs.w-d);
}
};
Edge edge[M];
class DisjointSet {
private:
int anc[N];
int find(const int &x) {
return x==anc[x]?x:anc[x]=find(anc[x]);
}
public:
void reset(const int &n) {
for(register int i=1;i<=n;i++) anc[i]=i;
}
void merge(const int &x,const int &y) {
anc[find(x)]=find(y);
}
bool same(const int &x,const int &y) {
return find(x)==find(y);
}
};
DisjointSet djs;
int main() {
for(register int i=1;;i++) {
const int n=getint(),m=getint();
if(n==0&&m==0) return 0;
for(register int i=1;i<=m;i++) {
edge[i].u=getint();
edge[i].v=getint();
edge[i].w=getint();
}
d=0;
std::sort(&edge[1],&edge[m]+1);
int l=0,r=0;
for(register int i=1;i<n;i++) l+=edge[i].w;
for(register int i=m;i>m-n+1;i--) r+=edge[i].w;
double ans=1e18;
for(register int i=l;i<=r;i++) {
d=1.*i/(n-1);
std::sort(&edge[1],&edge[m]+1);
djs.reset(n);
int sum1=0;
double sum2=0;
for(register int i=1;i<=m;i++) {
const int &u=edge[i].u,&v=edge[i].v;
if(djs.same(u,v)) continue;
djs.merge(u,v);
sum1+=edge[i].w;
sum2+=sqr(edge[i].w-d);
}
if(sum1==i) {
ans=std::min(ans,sum2/(n-1));
}
}
printf("Case %d: %.2f\n",i,ans);
}
}

源代码(3754):

#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=101,M=2001;
double d;
inline double sqr(const double &x) {
return x*x;
}
struct Edge {
int u,v,w;
bool operator < (const Edge &rhs) const {
return sqr(w-d)<sqr(rhs.w-d);
}
};
Edge edge[M];
class DisjointSet {
private:
int anc[N];
int find(const int &x) {
return x==anc[x]?x:anc[x]=find(anc[x]);
}
public:
void reset(const int &n) {
for(register int i=1;i<=n;i++) anc[i]=i;
}
void merge(const int &x,const int &y) {
anc[find(x)]=find(y);
}
bool same(const int &x,const int &y) {
return find(x)==find(y);
}
};
DisjointSet djs;
int main() {
const int n=getint(),m=getint();
for(register int i=1;i<=m;i++) {
edge[i].u=getint();
edge[i].v=getint();
edge[i].w=getint();
}
std::sort(&edge[1],&edge[m]+1);
int l=0,r=0;
for(register int i=1;i<n;i++) l+=edge[i].w;
for(register int i=m;i>m-n+1;i--) r+=edge[i].w;
double ans=1e18;
for(register int i=l;i<=r;i++) {
d=1.*i/(n-1);
std::sort(&edge[1],&edge[m]+1);
djs.reset(n);
int sum1=0;
double sum2=0;
for(register int i=1;i<=m;i++) {
const int &u=edge[i].u,&v=edge[i].v;
if(djs.same(u,v)) continue;
djs.merge(u,v);
sum1+=edge[i].w;
sum2+=sqr(edge[i].w-d);
}
if(sum1==i) {
ans=std::min(ans,sum2/(n-1));
}
}
printf("%.4f\n",sqrt(ans));
}

[BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树的更多相关文章

  1. [BZOJ3754]Tree之最小方差树

    3754: Tree之最小方差树 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 402  Solved: 152[Submit][Status][Di ...

  2. 【bzoj3754】Tree之最小方差树 最小生成树

    题目描述 给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小.输出这个最小方差. 输入 第一行两个正整数N,M 接下来M行,每行三个正整数Ui,Vi,Ci N<=100,M<=2 ...

  3. 【枚举】【最小生成树】【kruscal】bzoj3754 Tree之最小方差树

    发现,若使方差最小,则使Σ(wi-平均数)2最小即可. 因为权值的范围很小,所以我们可以枚举这个平均数,每次把边权赋成(wi-平均数)2,做kruscal. 但是,我们怎么知道枚举出来的平均数是不是恰 ...

  4. bzoj3754 Tree之最小方差树 最小生成树+推性质

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3754 题解 感觉这个思路挺神仙的. 后悔没有好好观察题目的数据范围,一直把 \(n\) 和 \ ...

  5. BZOJ 3754 Tree之最小方差树 MST

    Description Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城 ...

  6. 【BZOJ 3754】Tree之最小方差树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3754 核心思想:暴力枚举所有可能的平均数,对每个平均数排序后Kruskal. 正确的答案一定是最小的 ...

  7. BZOJ 3754 Tree之最小方差树

    枚举平均数. mdzz编译器. #include<iostream> #include<cstdio> #include<cstring> #include< ...

  8. 【BZOJ 3754】: Tree之最小方差树

    题目链接: TP 题解: 都是骗子233,我还以为是什么神奇的算法. 由于边权的范围很小,最小生成树和最大生成树之间的总和差不会太大,所以可以枚举边权和,再直接根据方差建最小生成树,每次更新答案即可. ...

  9. bzoj 3754: Tree之最小方差树 模拟退火+随机三分

    题目大意: 求最小方差生成树.N<=100,M<=2000,Ci<=100 题解: 首先我们知道这么一个东西: 一些数和另一个数的差的平方之和的最小值在这个数是这些数的平均值时取得 ...

随机推荐

  1. plsql developer导入导出序列方法

    导出: 1.打开PLSQL Developer,工具 2.类型排序,选中所有sequence,指定用户,单个文件,选择导出文件路径,等待执行完毕即可. 导入: 打开导出的文件,复制,在新打开的命令窗口 ...

  2. nginx配置集群

    1.准备两个Tomcat 首先在Linux机器上部署两个Tomcat,端口分别为80和8080 2.分别部署测试应用 在两个tomcat下分别部署同一个应用testapp,很简单,就是在页面显示当前系 ...

  3. 使用python命令构建最简单的web服务

    可以使用python自带的包建立最简单的web服务器,使用方法: 1)切换到服务器的根目录下 2)输入命令: python -m SimpleHTTPServer 3)使用wget或者在浏览器访问测试 ...

  4. [学习笔记]Javascript的包装对象

    例子1: var s="test"; s.len = 4; var t = s.len // t is undefined 原因是s是字符串,第二行代码,实际上是创建一个临时字符串 ...

  5. Go语言规格说明书 之 Go语句(Go statements)

    go version go1.11 windows/amd64 本文为阅读Go语言中文官网的规则说明书(https://golang.google.cn/ref/spec)而做的笔记,介绍Go语言的 ...

  6. Oracle12c 性能优化攻略:攻略目录表

    注:本文来源于 [美] Sam Alapati ,   Darl Kuhn ,  Bill Padfield  著   朱浩波 翻译 <Oracle Database 12C 性能优化攻略> ...

  7. CPU密集型 VS IO密集型

    CPU密集型 CPU密集型也叫计算密集型,指的是系统的硬盘.内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的 ...

  8. laravel 接口跨域

    最方便的方法,新建一个middleWare,把这个middleware加入到全局中间件,所有的请求,都会经过这个中间件的过滤. php artisan make:middleware CrossHtt ...

  9. poj2352树状数组解决偏序问题

    树状数组解决这种偏序问题是很厉害的! /* 输入按照y递增,对于第i颗星星,它的level就是之前出现过的星星中,横坐标小于i的总数 */ #include<iostream> #incl ...

  10. 【C++ Primer | 15】C++虚函数表剖析②

    多重继承 下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系. 注意:子类只overwrite了父类的f()函数,而还有一个是自己的函数(我们这样做的目的是为了用g1()作为一个标记 ...