$\min - \max$ 容斥

Part 1

对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times \min(T)$

对于上述式子,可以简单的理解。

对于$S$中的每一项,其中的最大值为第$i$项

由于$|T|$非空,一共有$2^{|S|}-1$个$T$,其中,对于非最大值的任意一项,都包含至少一个比其大的元素

所以这些元素的选择情况构成了$2^{k}$幂,其中$|T|$的奇偶分布相同,所以相互抵消

而最大元素只有一个,所以会保留

显然对$\min(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times \max(S)$同样成立

Part 2

有关推广

对于期望,该容斥同样成立

也就是说:$E(\max(S))=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times E(\min(T))$

具体证明是来自期望的线性性

我忘记了qwq

Part 3

$k\max-\min$容斥

对于每个元素在答案中的贡献显然为$[n-x+1=k]$

那么套上容斥系数:$[n-x+1=k]=\sum\limits_{i=0}^{n-x}C(n-x,i)\times f(i+1)$

也就是说:$[x+1=k]=\sum\limits_{i=0}^x C(x,i)\times f(i+1)$

这是个二项式反演没错了:$f(x+1)=\sum\limits_{i=0}^x (-1)^{x-i}\times C(x,i)\times [i=k-1]=(-1)^{x-k+1}\times C(x,k-1)$

然后化简:$f(x)=(-1)^{x-k}\times C(x-1,k-1)$

这是容斥系数qwq

那么就可以写出来:$k\max(S)=\sum\limits_{T\subseteq S} (-1)^{|T|-k}\times C(|T|-1,k-1)\times \min(S)$

Part 4

对于上述$k\max (S)$同样满足对期望成立...

所以就上例题了qwq

重返现世

你发现,这就是个板子qwq

$ans=\sum\limits_{S}(-1)^{|S|-k}\times C(|S|-1,k-1)\times \min(S)$

显然,对于$\min (S)=\frac{m}{\sum\limits_{x\in S}P_x}$

所以直接DP就好了qwq

min-max 容斥的更多相关文章

  1. Min-max 容斥与 kth 容斥

    期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...

  2. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  3. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  4. hdu1695:数论+容斥

    题目大意: 求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数 题解: 观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1.. 即问题转化 ...

  5. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  6. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  7. 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元

    题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  8. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

  9. min-max容斥 hdu 4336 && [BZOJ4036] 按位或

    题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min( ...

随机推荐

  1. unity相机跟随Player常用方式

    固定跟随,无效果(意义不大) public class FollowPlayer : MonoBehaviour { public Transform Player; private Vector3 ...

  2. Oracle 11g数据库的创建

    由于是自己自学Oracle,如果有问题,请大家指出,谢谢! Oracle提供了DBCA来创建数据库,对于初学者来说使用DBCA创建数据库简化了很多工作和设置,直接在交互界面即可实现所有的功能. 然而对 ...

  3. spring资源访问接口和资源加载接口

    spring 资源访问接口 JDK提供的资源访问类,如java.net.URL.File等,不能很好地满足各种资源的访问需求,比如缺少从类路径或者Web容器的上下文中获取资源的操作类. 鉴于此,spr ...

  4. 自己搭建git 代码服务器

    使用git服务器的工程师都需要生成一个ssh的公钥 ~/.ssh$ ssh-keygen Generating public/private rsa key pair. …………………… ……………… ...

  5. (后台)详细了解java中的null(转)

    转自CSDN: 相信大家对于NullPointException 这个让人又爱又恨的不陌生吧..对于Java程序员来说,null是令人头痛的东西.时常会受到空指针异常(NPE)的骚扰 .今天我们就来谈 ...

  6. Java:【面向对象:类的定义,静态变量,成员变量,构造函数,封装与私有,this】

    本文内容: 什么是面对对象 类的定义与对象实例化 成员变量 成员变量的有效范围 成员变量的赋值 静态变量.方法与实例变量.方法 构造函数 封装与私有 this关键字 注:函数和方法是一样东西.[由于我 ...

  7. LeetCode题解之 Find Mode in Binary Search Tree

    1.题目描述 2.问题分析 使用map记录元素出现的次数. 3.代码 vector<int> v; map<int,int> m; vector<int> find ...

  8. Python中识别DataFrame中的nan

    # 识别python中DataFrame中的nanfor i in pfsj.index: if type(pfsj.loc[i]['WZML']) == float: print('float va ...

  9. 设计模式--Proxy

    转自:http://blog.csdn.net/dan_xp/article/details/1820852 最近一直在看java的设计模式 ,感觉印象最深刻的就是"面向接口编程" ...

  10. NetBeans数据库笔记---三层架构

    1.创建数据库,数据表 用MySQL数据库和Navicat for MySQL工具创建表 2.创建实体类——反应表结构(列——变量) 也就是对应表建立的gets和sets方法,实体类的名字一般都与数据 ...