min-max 容斥
$\min - \max$ 容斥
Part 1
对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times \min(T)$
对于上述式子,可以简单的理解。
对于$S$中的每一项,其中的最大值为第$i$项
由于$|T|$非空,一共有$2^{|S|}-1$个$T$,其中,对于非最大值的任意一项,都包含至少一个比其大的元素
所以这些元素的选择情况构成了$2^{k}$幂,其中$|T|$的奇偶分布相同,所以相互抵消
而最大元素只有一个,所以会保留
显然对$\min(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times \max(S)$同样成立
Part 2
有关推广
对于期望,该容斥同样成立
也就是说:$E(\max(S))=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times E(\min(T))$
具体证明是来自期望的线性性
我忘记了qwq
Part 3
$k\max-\min$容斥
对于每个元素在答案中的贡献显然为$[n-x+1=k]$
那么套上容斥系数:$[n-x+1=k]=\sum\limits_{i=0}^{n-x}C(n-x,i)\times f(i+1)$
也就是说:$[x+1=k]=\sum\limits_{i=0}^x C(x,i)\times f(i+1)$
这是个二项式反演没错了:$f(x+1)=\sum\limits_{i=0}^x (-1)^{x-i}\times C(x,i)\times [i=k-1]=(-1)^{x-k+1}\times C(x,k-1)$
然后化简:$f(x)=(-1)^{x-k}\times C(x-1,k-1)$
这是容斥系数qwq
那么就可以写出来:$k\max(S)=\sum\limits_{T\subseteq S} (-1)^{|T|-k}\times C(|T|-1,k-1)\times \min(S)$
Part 4
对于上述$k\max (S)$同样满足对期望成立...
所以就上例题了qwq
你发现,这就是个板子qwq
$ans=\sum\limits_{S}(-1)^{|S|-k}\times C(|S|-1,k-1)\times \min(S)$
显然,对于$\min (S)=\frac{m}{\sum\limits_{x\in S}P_x}$
所以直接DP就好了qwq
min-max 容斥的更多相关文章
- Min-max 容斥与 kth 容斥
期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- UVa12633 Super Rooks on Chessboard(容斥 + FFT)
题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...
- hdu1695:数论+容斥
题目大意: 求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数 题解: 观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1.. 即问题转化 ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元
题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...
- min-max容斥学习笔记
min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...
- min-max容斥 hdu 4336 && [BZOJ4036] 按位或
题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min( ...
随机推荐
- 前端开发面试题-CSS(转载)
本文由 本文的原作者markyun 收集总结. 介绍一下标准的CSS的盒子模型?低版本IE的盒子模型有什么不同的? (1)有两种, IE 盒子模型.W3C 盒子模型: (2)盒模型: 内容(conte ...
- 纯小白入手 vue3.0 CLI - 2.7 - 组件之间的数据流
vue3.0 CLI 真小白一步一步入手全教程系列:https://www.cnblogs.com/ndos/category/1295752.html 尽量把纷繁的知识,肢解重组成为可以堆砌的知识. ...
- JavaScript大杂烩14 - 使用JQuery(上)
JQuery意义 - Why? 为什么要使用JQuery,从我个人来说,就是这么几点:简化代码 + 统一行为 + 功能强大 + 搭配方便. 简化代码是从写代码的角度来说的,实现同样的功能,如果用Jav ...
- EntityFramework Code-First 简易教程(十一)-------从已存在的数据库中映射出表
怎样从一个已存在的数据库中映射表到 entity 实体? Entity Framework 提供了一个简便方法,可以为已存在的数据库里的所有表和视图创建实体类(entity class),并且可以用 ...
- String类的常用方法详解
1:获取字符串的长度length(),下标从1开始 2:将其他类型转换为String类型toStrings() 3:去除字符串首尾的空格trim() 4:分割字符串spilt() 5:比较两个字符串是 ...
- 装饰器 以及 django 中的应用
装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象.它经常用于有切面需求的场景,比如:插入日志.性能测试.事务处理.缓存.权 ...
- swift函数的调用约定
The convention of the function, indicated by the attribute. This is similar to the language-level @c ...
- log4j2 yml
1.log4j2默认加载文件为log4j2.xml 2.要使用yml加载需添加依赖 <!-- https://mvnrepository.com/artifact/com.fasterxml.j ...
- 「SNOI2019」字符串
题目 看起来非常一眼啊,我们完全可以\(std::sort\)来解决这歌问题 于是现在的问题转化成了比较函数怎么写 随便画一下就会发现前面的好几位是一样的,后面的好几位也是一样,只需要比较中间的一段子 ...
- 转://UDEV简介及配置过程
在Linux环境下安装Oracle11g RAC时,OS层面配置好多路径软件后(multipath),下一步就需要配置udev或asmlib来处理共享分区(Lun),以便Orace ASM能够看到这些 ...