P4137 Rmq Problem /mex

题意

给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\)


可以莫队然后对值域分块,这样求\(mex\)的复杂度就正确了

一种更优的做法是按值域建可持久化线段树,对每个节点维护当前值域区间的最小出现位置,然后查询的时候就从\(r\)的那棵树一直尽量往左边走就好了


Code:

#include <cstdio>
#include <cstring>
const int N=2e5+10;
#define ls ch[now][0]
#define rs ch[now][1]
#define ols ch[las][0]
#define ors ch[las][1]
int mi[N*30],ch[N*30][2],root[N],n,m,tot;
int min(int x,int y){return x<y?x:y;}
void rebuild(int las,int &now,int l,int r,int p,int d)
{
now=++tot;
if(l==r){mi[now]=d;return;}
int mid=l+r>>1;
if(p<=mid) rebuild(ols,ls,l,mid,p,d),rs=ors;
else ls=ols,rebuild(ors,rs,mid+1,r,p,d);
mi[now]=min(mi[ls],mi[rs]);
}
int query(int now,int l,int r,int lim)
{
if(l==r) return l;
int mid=l+r>>1;
if(mi[ls]<lim) return query(ls,l,mid,lim);
else return query(rs,mid+1,r,lim);
}
void build(int &now,int l,int r)
{
mi[now=++tot]=0;
if(l==r) return;
int mid=l+r>>1;
build(ls,l,mid),build(rs,mid+1,r);
}
int main()
{
scanf("%d%d",&n,&m);
memset(mi,0x3f,sizeof mi);
build(root[0],1,++n);
for(int a,i=1;i<n;i++)
{
scanf("%d",&a);
if(a<n) rebuild(root[i-1],root[i],1,n,a+1,i);
else root[i]=root[i-1];
}
for(int l,r,i=1;i<=m;i++)
{
scanf("%d%d",&l,&r);
printf("%d\n",query(root[r],1,n,l)-1);
}
return 0;
}

2019.1.28

洛谷 P4137 Rmq Problem /mex 解题报告的更多相关文章

  1. 洛谷 P4137 Rmq Problem / mex

    https://www.luogu.org/problemnew/show/P4137 只会log^2的带修主席树.. 看了题解,发现有高妙的一个log做法:权值线段树上,设数i对应的值ma[i]为数 ...

  2. 洛谷P4137 Rmq Problem / mex(莫队)

    题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...

  3. 洛谷 P4137 Rmq Problem/mex 题解

    题面 首先,由于本人太菜,不会莫队,所以先采用主席树的做法: 离散化是必须环节,否则动态开点线段数都救不了你: 我们对于每个元素i,插入到1~(i-1)的主席树中,第i颗线段树(权值线段树)对于一个区 ...

  4. P4137 Rmq Problem / mex (莫队)

    题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...

  5. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  6. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  7. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  8. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  9. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

随机推荐

  1. Part 5:Django测试--Django从入门到精通系列教程

    该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. 本节将简要介绍Django的自动化测试相关内 ...

  2. 懒人小工具1:winform自动生成Model,Insert,Select,Delete以及导出Excel的方法

       懒人小工具2:T4自动生成Model,Insert,Select,Delete以及导出Excel的方法    github地址:https://github.com/Jimmey-Jiang/J ...

  3. 身在上海的她,该不该继续"坚持"前端开发?

    作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. 一 对于目前的IT行业,我实在不想她还没在这个行业中站稳脚跟就开始有 ...

  4. Name方法

    重命名磁盘文件.目录或文件夹. 语法 Name 旧路径名称 As 新路径名称 “Name”**** 语句语法包含以下部分: 部分 说明 旧路径名称 必需. 字符串表达式,指定现有的文件名和位置;可能包 ...

  5. openssl版本升级操作记录

    需要部署nginx的https环境,之前是yum安装的openssl,版本比较低,如下: [root@nginx ~]# yum install -y pcre pcre-devel openssl ...

  6. HAOI2016 找相同字符 后缀自动机

    两个串,考虑一建一跑.枚举模式串的位置\(i\),考虑每次统计以\(i\)结尾的所有符合要求的串.在后缀自动机上走时记录当前匹配长度\(curlen\),则当前节点的贡献是\((curlen-len[ ...

  7. Daily Scrum NO.10

    工作概况 今天是两周正是开发的最后一个工作日,虽然也是编译的DEADLINE,但成员们还是较为积极.计划内的工作基本都能够完成:线程池.异常清理器和动态爬取的功能.异常清理器界面的第一版也在今晚做了出 ...

  8. 2-Twenty third Scrum Meeting-20151229

    前言 因为服务器关闭至今,我们的开发项目也遭遇停滞一个星期.与网站开发负责人员协商之后,今天继续开放服务器.我们的项目也能够继续下去.比规定的开发时间(截止为2015/12/29)推迟,因此我们今天又 ...

  9. s标签s:if和s:set实现一个表格显示为多个表格

    1.首先本来这个表格是这样的 2.这时候代码是这样的 <table cellpadding="4"> <tr> <th>指标点</th&g ...

  10. ASP.NET MVC使用ADO.NET连接数据库

    深入理解ADO.NET友情链接:http://www.cnblogs.com/liuhaorain/category/352388.html 小白手把手:VS2017  SQL Server 2014 ...