luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)
由范围可以想到状压dp
两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的
这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下自己和自己确定的抛物线只经过自己)
然后设状态s表示目前已经有哪些点被击中了,然后我们钦定这次就要打那个最小的还没击中的点(因为吃枣都要打的嘛),再枚举出另一个还没经过的点,就能得到转移方程
$f[s|line[i][j]]=max\{f[s]+1\}$,其中$line[i][j]$表示i、j两点确定的抛物线经过的所有的点,i是s中还未击中的最小的点
复杂度是$O(n2^n)$
#include<bits/stdc++.h>
#define pa pair<int,int>
#define lowb(x) ((x)&(-(x)))
#define REP(i,n0,n) for(i=n0;i<=n;i++)
#define PER(i,n0,n) for(i=n;i>=n0;i--)
#define MAX(a,b) ((a>b)?a:b)
#define MIN(a,b) ((a<b)?a:b)
#define CLR(a,x) memset(a,x,sizeof(a))
#define rei register int
using namespace std;
typedef long long ll;
const int maxn=,maxs=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N;
double pos[maxn][];
int line[maxn][maxn];
int f[maxs],bin[maxn]; inline bool eq(double a,double b){return fabs(a-b)<=1e-;}
inline void getab(double &a,double &b,double x1,double y1,double x2,double y2){
a=(x2*y1-x1*y2)/(x1*x2*(x1-x2));
b=(x1*x1*y2-x2*x2*y1)/(x1*x2*(x1-x2));
} int main(){
// freopen("testdata.in","r",stdin);
int i,j,k;
for(i=,j=;i<=;i++,j<<=) bin[i]=j;
for(int T=rd();T;T--){
N=rd();rd();
for(i=;i<=N;i++) scanf("%lf%lf",&pos[i][],&pos[i][]);
for(i=;i<=N;i++){
for(j=i+;j<=N;j++){
double a,b;getab(a,b,pos[i][],pos[i][],pos[j][],pos[j][]); int s=;
if(a<){
for(k=;k<=N;k++ ){
if(eq(a*pos[k][]*pos[k][]+b*pos[k][],pos[k][])){
s|=bin[k];
}
}
}
line[i][j]=s;
// cout<<a<<" "<<b<<" "<<i<<" "<<j<<" "<<bitset<20>(s)<<endl;
}line[i][i]=bin[i];
}
memset(f,,sizeof(f));
f[]=;
for(i=;i<bin[N+]-;i++){
for(j=;bin[j]&i;j++);
for(k=j;k<=N;k++){
if(bin[k]&i) continue;
f[i|line[j][k]]=min(f[i|line[j][k]],f[i]+);
}
}printf("%d\n",f[bin[N+]-]);
} return ;
}
luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)的更多相关文章
- NOIP2016愤怒的小鸟 [状压dp]
愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...
- [noip2016]愤怒的小鸟<状压dp+暴搜>
题目链接:https://vijos.org/p/2008 现在回过头去看去年的考试题,发现都不是太难,至少每道题都有头绪了... 这道题的数据范围是18,这么小,直接暴力呗,跑个暴搜就完了,时间也就 ...
- [Luogu P2831] 愤怒的小鸟 (状压DP)
题面: 传送门:https://www.luogu.org/problemnew/show/P2831 Solution 首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索. ...
- 洛谷P2831 愤怒的小鸟(状压dp)
题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...
- NOIP2016Day2T3愤怒的小鸟(状压dp) O(2^n*n^2)再优化
看这范围都知道是状压吧... 题目大意就不说了嘿嘿嘿 网上流传的写法复杂度大都是O(2^n*n^2),这个复杂度虽然官方数据可以过,但是在洛谷上会TLE[百度搜出来前几个博客的代码交上去都TLE了], ...
- 【题解】P2831 愤怒的小鸟 - 状压dp
P2831愤怒的小鸟 题目描述 \(Kiana\) 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\) 可以 ...
- P2831 愤怒的小鸟 状压dp
这个题主要是预处理比较复杂,先枚举打每只鸟用的抛物线,然后找是否有一个抛物线经过两只鸟,然后就没了. 题干: 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上 ...
- [NOIP2016]愤怒的小鸟 D2 T3 状压DP
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...
- Noip2016愤怒的小鸟(状压DP)
题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...
随机推荐
- JDK8 stream toMap() java.lang.IllegalStateException: Duplicate key异常解决(key重复)
测试又报bug啦 接到测试小伙伴的问题,说是一个接口不返回数据了,好吧,虽然不是我写的接口任务落到头上也得解决,本地调试了一下,好家伙,直接抛了个异常出来,这又是哪位大哥喝醉了写的代码... Exce ...
- sql 某字段存储另一个表的多个id值并以逗号分隔,现根据id去中文并拼接同样以逗号分隔
首先介绍用到的两个函数 charindex(要查找的表达式1,表达式2),返回值为表达式1在表达式2中的下标,未找到则返回0.(sql的下标是从1开始的),例如 select charindex('s ...
- D. Boxes Packing
链接 [http://codeforces.com/contest/1066/problem/D] 题意 题目大意 n个物品m个篮子每个篮子容量为k 每个物品重量为a[i] 问能装多少物品 这个人是强 ...
- zifutongji
第三次作业要求我们自己写程序,我算我们班写的比较晚的了,我听他们写的都是在文件中写一段代码,然后读出来.我们班大部分都是,所以,我就想可不可以跟他们不一样呢,写一个属于自己的思路. 所以我想到了数组. ...
- Natural Language Generation/Abstractive Summarization
调研目的: 了解生成式文本摘要的常用技术和当前的发展趋势,明确当前项目有什么样的摘要需求,判断现有技术能否用于满足当前的需求,进一步明确毕业设计方向及其可行性 调研方向: 项目中需要用到摘要的地方以及 ...
- 《linux内核设计与实现》读书笔记——第三章
- 2017-2018-2 1723《程序设计与数据结构》第十一周作业 & 实验三 & (总体)第三周结对编程 总结
作业地址 第十一次作业:https://edu.cnblogs.com/campus/besti/CS-IMIS-1723/homework/1933 (作业界面已评分,可随时查看,如果对自己的评分有 ...
- sqlalchemy orm 操作 MySQL
一.ORM介绍 orm英文全称object relational mapping,是对象映射关系程序,简单来说类似python这种面向对象的程序来说一切皆对象,但是我们使用的数据库却都是关系型的,为了 ...
- react 动态获取数据
如果reander()里面的dom元素是动态获取的,就要将函数放到setSTATE()里面执行
- centos7编译安装zabbix的错误
[Z3001] connection to database 'zabbix' failed: [2002] Can't connect to local MySQL server through s ...