拉普拉斯平滑处理 Laplace Smoothing
背景:为什么要做平滑处理?
零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0。这是不合理的,不能因为一个事件没有观察到就武断的认为该事件的概率是0。
拉普拉斯的理论支撑
为了解决零概率的问题,法国数学家拉普拉斯最早提出用加1的方法估计没有出现过的现象的概率,所以加法平滑也叫做拉普拉斯平滑。
假定训练样本很大时,每个分量x的计数加1造成的估计概率变化可以忽略不计,但可以方便有效的避免零概率问题。
应用举例
假设在文本分类中,有3个类,C1、C2、C3,在指定的训练样本中,某个词语K1,在各个类中观测计数分别为0,990,10,K1的概率为0,0.99,0.01,对这三个量使用拉普拉斯平滑的计算方法如下:
1/1003 = 0.001,991/1003=0.988,11/1003=0.011
在实际的使用中也经常使用加 lambda(1≥lambda≥0)来代替简单加1。如果对N个计数都加上lambda,这时分母也要记得加上N*lambda。
拉普拉斯平滑处理 Laplace Smoothing的更多相关文章
- 拉普拉斯平滑(Laplacian smoothing)
概念 零概率问题:在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是 $0$ .这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该 ...
- 拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)
作者:桂. 时间:2017-04-13 07:43:03 链接:http://www.cnblogs.com/xingshansi/p/6702188.html 声明:欢迎被转载,不过记得注明出处哦 ...
- Naive Bayes Algorithm And Laplace Smoothing
朴素贝叶斯算法(Naive Bayes)适用于在Training Set中,输入X和输出Y都是离散型的情况.如果输入X为连续,输出Y为离散,我们考虑使用逻辑回归(Logistic Regression ...
- 标签平滑(Label Smoothing)详解
什么是label smoothing? 标签平滑(Label smoothing),像L1.L2和dropout一样,是机器学习领域的一种正则化方法,通常用于分类问题,目的是防止模型在训练时过于自信地 ...
- 高斯拉普拉斯算子(Laplace of Gaussian)
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子, ...
- 拉普拉斯分布(Laplace distribution)
拉普拉斯分布的定义与基本性质 其分布函数为 分布函数图 其概率密度函数为 密度函数图 拉普拉斯分布与正太分布的比较 从图中可以直观的发现拉普拉斯分布跟正太分布很相似,但是拉普拉斯分布比正太分布有尖的峰 ...
- [置顶] 生成学习算法、高斯判别分析、朴素贝叶斯、Laplace平滑——斯坦福ML公开课笔记5
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开 ...
- Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...
- 朴素贝叶斯方法(Naive Bayes Method)
朴素贝叶斯是一种很简单的分类方法,之所以称之为朴素,是因为它有着非常强的前提条件-其所有特征都是相互独立的,是一种典型的生成学习算法.所谓生成学习算法,是指由训练数据学习联合概率分布P(X,Y ...
随机推荐
- jar包不能乱放【浪费了下午很多时间】
不能放在类路径下(也即是src文件夹下),然后再buildpath 必须放在web-inf文件夹下 这样才能tomcat找打jar文件
- Flutter 学习资料
Flutter 学习资料: 学习资料 网址 Flutter 中文网 https://flutterchina.club/ <Flutter实战>电子书 https://book.flutt ...
- 使用phpAnalysis打造PHP应用非侵入式性能分析器
使用phpAnalysis打造PHP应用非侵入式性能分析器,查找PHP性能瓶颈. 什么是phpAnalysis phpAnalysis是一款轻量级非侵入式PHP应用性能分析器,适用于开发.测试及生产环 ...
- 从Java角度理解Angular之入门篇:npm, yarn, Angular CLI
本系列从Java程序员的角度,带大家理解前端Angular框架. 本文重点介绍Angular的开发.编译工具:npm, yarn, Angular CLI,它们就像Java在中的Maven,同时顺便介 ...
- JAVA web端JS下载excel文件
JSP代码如下: JSP端引入jquery.easyui.min.js库: <script type="text/javascript" src="<c:ur ...
- kafka集群的错误处理--kafka一个节点挂了,导致消费失败
今天由于kafka集群搭建时的配置不当,由于一台主消费者挂掉(服务器崩了,需要维修),导致了所有新版消费者(新版的offset存储在kafka)都无法拉取消息. 由于是线上问题,所以是绝对不能影响用户 ...
- MPP数据库
MPP数据库 版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/lyc417356935/article/details/45033069 MPP数据库定 ...
- AtomicInteger类和int原生类型自增鲜明的对比
AtomicInteger这个类的存在是为了满足在高并发的情况下,原生的整形数值自增线程不安全的问题.比如说 int i = 0 ; i++; 上面的写法是线程不安全的. 有的人可能会说了,可以使 ...
- 用python探索和分析网络数据
Edited by Markdown Refered from: John Ladd, Jessica Otis, Christopher N. Warren, and Scott Weingart, ...
- leetcode23
public class Solution { public ListNode MergeKLists(ListNode[] lists) { var ary = new List<int> ...