题目


分析

显然树上的问题可以转换成根节点到两点的答案减去2倍根节点到LCA的答案

化边为点,考虑子节点承接父节点的trie,再加入一条新的字符串,

在循环的过程中统计一个位置被多少个字符串经过,

这样在查询的时候直接访问某个trie跳到末尾找到答案


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=100101; char s[N][11];
struct node{int y,next;}e[N<<1];
int Len[N],trie[N*10][26],sum[N*10],n,k=1,dep[N];
int dfn[N],son[N],top[N],fat[N],as[N],rt[N],Tot,tot,big[N];
inline signed iut(){
rr signed ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed Insert(int Rt,int j){
rr int trt=++Tot;
for (rr int i=1;i<=Len[j];++i){
for (rr int p=0;p<26;++p)
trie[Tot][p]=trie[Rt][p];
sum[Tot]=sum[Rt]+1;
trie[Tot][s[j][i]-97]=Tot+1,
Rt=trie[Rt][s[j][i]-97],++Tot;
}
sum[Tot]=sum[Rt]+1;
for (rr int p=0;p<26;++p)
trie[Tot][p]=trie[Rt][p];
return trt;
}
inline signed query(int Rt){
for (rr int j=1;j<=Len[0];++j)
Rt=trie[Rt][s[0][j]-97];
return sum[Rt];
}
inline void dfs1(int x,int fa){
dep[x]=dep[fa]+1,fat[x]=fa,son[x]=1;
for (rr int i=as[x],mson=-1;i;i=e[i].next)
if (e[i].y!=fa){
rt[e[i].y]=Insert(rt[x],i>>1);
dfs1(e[i].y,x),son[x]+=son[e[i].y];
if (son[e[i].y]>mson) big[x]=e[i].y,mson=son[e[i].y];
}
}
inline void dfs2(int x,int linp){
dfn[x]=++tot,top[x]=linp;
if (!big[x]) return; dfs2(big[x],linp);
for (rr int i=as[x];i;i=e[i].next)
if (e[i].y!=fat[x]&&e[i].y!=big[x])
dfs2(e[i].y,e[i].y);
}
inline signed Lca(int x,int y){
while (top[x]!=top[y]){
if (dep[top[x]]<dep[top[y]]) x^=y,y^=x,x^=y;
x=fat[top[x]];
}
if (dep[x]>dep[y]) x^=y,y^=x,x^=y;
return x;
}
signed main(){
n=iut();
for (rr int i=1;i<n;++i){
rr int x=iut(),y=iut();
e[++k]=(node){y,as[x]},as[x]=k;
e[++k]=(node){x,as[y]},as[y]=k;
rr char c=getchar();
while (!isalpha(c)) c=getchar();
while (isalpha(c)) s[i][++Len[i]]=c,c=getchar();
}
dfs1(1,0),dfs2(1,1);
for (rr int Q=iut();Q;--Q,putchar(10)){
rr int x=iut(),y=iut(),lca=Lca(x,y);
rr char c=getchar(); Len[0]=0;
while (!isalpha(c)) c=getchar();
while (isalpha(c)) s[0][++Len[0]]=c,c=getchar();
print(query(rt[x])+query(rt[y])-2*query(rt[lca]));
}
return 0;
}

#trie,树链剖分#洛谷 6088 [JSOI2015]字符串树的更多相关文章

  1. AC日记——【模板】树链剖分 洛谷 P3384

    题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...

  2. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  3. 树链剖分 - Luogu 3384【模板】树链剖分

    [模板]树链剖分 题目描述 已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操 ...

  4. 树剖+线段树||树链剖分||BZOJ1984||Luogu4315||月下“毛景树”

    题面:月下“毛景树” 题解:是道很裸的树剖,但处理的细节有点多(其实是自己线段树没学好).用一个Dfs把边权下移到点权,用E数组记录哪些边被用到了:前三个更新的操作都可以合并起来,可以发现a到b节点间 ...

  5. poj 3237 树链剖分模板(用到线段树lazy操作)

    /* 本体在spoj375的基础上加了一些操作,用到线段树的lazy操作模板类型 */ #include<stdio.h> #include<string.h> #includ ...

  6. 洛谷P3313 [SDOI2014]旅行(树链剖分 动态开节点线段树)

    题意 题目链接 Sol 树链剖分板子 + 动态开节点线段树板子 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...

  7. 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点

    题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...

  8. 【模板时间】◆模板·II◆ 树链剖分

    [模板·II]树链剖分 学长给我讲树链剖分,然而我并没有听懂,还是自学有用……另外感谢一篇Blog +by 自为风月马前卒+ 一.算法简述 树链剖分可以将一棵普通的多叉树转为线段树计算,不但可以实现对 ...

  9. BZOJ 1036: [ZJOI2008]树的统计Count [树链剖分]【学习笔记】

    1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 14302  Solved: 5779[Submit ...

  10. HDU 3966 & POJ 3237 & HYSBZ 2243 树链剖分

    树链剖分是一个很固定的套路 一般用来解决树上两点之间的路径更改与查询 思想是将一棵树分成不想交的几条链 并且由于dfs的顺序性 给每条链上的点或边标的号必定是连着的 那么每两个点之间的路径都可以拆成几 ...

随机推荐

  1. 海康摄像SDK开发笔记(一):海康威视网络摄像头SDK介绍与模块功能

    前言   视频监控.人脸识别等应用中经常使用到摄像头,当前占据主流视频监控摄像头就是海康和大华两家,都可通过自家的sdk或者是onvif方式使用和控制摄像头.  本文章讲解海康的sdk方式.   海康 ...

  2. django学习第十天---ajax请求和JsonResponse

    AJAX 它是js的功能,特点:异步请求,局部刷新 简单请求示例 基于jquery的ajax请求 异步请求,不会刷新页面,页面上用户之前输入的数据都不会丢失 <p>下面是ajax请求< ...

  3. 机器学习策略篇:详解单一数字评估指标(Single number evaluation metric)

    单一数字评估指标 无论是调整超参数,或者是尝试不同的学习算法,或者在搭建机器学习系统时尝试不同手段,会发现,如果有一个单实数评估指标,进展会快得多,它可以快速告诉,新尝试的手段比之前的手段好还是差.所 ...

  4. 06-Redis系列之-哨兵(Redis-Sentinel)和集群详解和搭建

    主从架构高可用 主从架构存在的问题 主从复制,主节点发生故障,需要做故障转移.(可以手动转移:让其中一个slave变成master) 主从复制,只有主写数据,所以写能力和存储能力有限 总结:redis ...

  5. Finder Error code -36 “访达” 错误代码-36

    导致这个问题的原因是你的iCloud (iCloud和iCloud Drive是不一样的) 快满了. 如果你想解决这个问题,有以下三个方法: 1.多买苹果iCloud.(是的,苹果现在太恶心了.但这是 ...

  6. 【Azure 环境】如果Azure中的某一个资源被删除后是否可以查看到删除的记录呢?如Resource Group

    问题描述 当一个资源从Azure中删除后,是否有地方可以查看到这些操作的记录呢?如操作人,操作时间等. 问题解答 可以的.通过 Azure订阅页面的活动日志,可以查看所有对订阅下资源的操作记录,包含D ...

  7. 【Azure 应用服务】应用服务中发布Docker Container,如何添加卷(如Azure File Share)以便永久存储文件

    问题描述 应用服务中发布Docker Container,如何添加卷(如Azure File Share)以便永久存储文件 问题解答 App Service可以通过门户配置Mount Storage, ...

  8. Nebula Importer 数据导入实践

    本文首发于 Nebula Graph Community 公众号 前言 Nebula 目前作为较为成熟的产品,已经有着很丰富的生态.数据导入的维度而言就已经提供了多种选择.有大而全的Nebula Ex ...

  9. vscode 自定义 当前行转大写快捷键 alt + shift + U

    vscode 自定义 当前行转大写快捷键 alt + shift + U

  10. 【深度学习】神经网络正则化方法之Dropout

    前言 正则化是一种广泛用于机器学习和深度学习的手段,它的目的就是阻碍模型过度学习(过拟合),从而提升算法的泛化能力. Dropout 是一种常见的缓解过拟合的方法.接下来,本文将从原理和实践来介绍Dr ...