P4831-Scarlet loves WenHuaKe【组合数学】
正题
题目链接:https://www.luogu.com.cn/problem/P4831
题目大意
\(n*m\)的网格上放置\(2n\)个炮,要求互不能攻击。
数据满足\(n\leq m\leq 2000\)或\(n\leq m\leq 10^5\)且\(m-n\leq 10\)
解题思路
每行每列最多\(2\)个炮,所以模型可以转换为求有多少种方案满足:\(1\sim n\)的数字各两个填在\(m\)个无序2元组(可以有空),并且每个组中的数互不相同。
直接硬钢推式子很难做(好像可以推到生成函数那边去),考虑一下巧妙的方法。
设\(g(n,m)\)表示\(2n\)个格子填下\(1\sim m\)中的数字各两个的方案。这个的方案就是
\]
表示\(m\)个数组中选出\(n-i\)对相同的来填,剩下的里面选出\(2i\)个单独的来填,然后交换导致重复的情况有\(2^{n-i}\)种,要除去。
这个式子就和\(m-n\)有很大的关系了。
将这个式子和答案联系起来,设\(f(n,m)\)表示答案,那么有
\]
因为\(f(n,m)\)是不同无序二元组,\(\binom{n}{i}P_{m}^i\)表示\(n\)对中选出\(i\)个是相同的填入,剩下的都是不同的方案就是\(f(n-i,m-i)\),然后因为\(g\)是统计有序二元组的,所以\(2^n\)表示随意交换。
\]
\]
然后直接计算就好了,时间复杂度\(O(n\times min\{n,m-n\})\)
\(Update:\)修改了反演前的公式错误
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e5+10,P=998244353,inv2=(P+1)/2;
ll n,m,fac[N],inv[N],pv2[N],ans;
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
ll A(ll n,ll m)
{return fac[n]*inv[n-m]%P;}
ll g(ll n,ll m){
ll ans=0;
for(ll i=0;i<=min(n,m-n);i++)
(ans+=C(m,n-i)*C(m-n+i,2*i)%P*pv2[n-i]%P)%=P;
return ans*fac[2*n]%P;
}
signed main()
{
scanf("%lld%lld",&n,&m);
inv[1]=1;
for(ll i=2;i<N;i++)inv[i]=P-(P/i)*inv[P%i]%P;
fac[0]=inv[0]=pv2[0]=1;
for(ll i=1;i<N;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P,pv2[i]=pv2[i-1]*inv2%P;
for(ll i=0,p=1;i<=n;i++,p=-p)
(ans+=p*(g(n-i,m-i)*C(n,i)%P*A(m,i)%P))%=P;
printf("%lld\n",(ans*pv2[n]%P+P)%P);
return 0;
}
P4831-Scarlet loves WenHuaKe【组合数学】的更多相关文章
- 洛谷P4831 Scarlet loves WenHuaKe
这道题告诉我们推式子的时候头要够铁. 题意 问一个\(n\times m\)的棋盘,摆上\(n\times 2\)个中国象棋的炮使其两两不能攻击的方案数,对\(998244353\)取模. \((n\ ...
- 【LG 4831】Scarlet loves WenHuaKe(生成函数)
题目链接 一道好题,第一次用生成函数做题.感谢赛珂狼教我这个做法. 首先我们显然可以把题目中的限制转化成一个二分图的模型:左边有$n$个点,右边有$m$个点,如果在棋盘$(i,j)$这个点上放了炮,那 ...
- ****The Toy of Flandre Scarlet
The Toy of Flandre Scarlet Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & ...
- BZOJ3462 DZY Loves Math II(动态规划+组合数学)
容易发现这是一个有各种玄妙性质的完全背包计数. 对于每个质数,将其选取个数写成ax+b的形式,其中x=S/pi,0<b<x.那么可以枚举b的部分提供了多少贡献,多重背包计算,a的部分直接组 ...
- [SinGuLaRiTy] 组合数学题目复习
[SinGuLaRiTy] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [CQBZOJ 2011] 计算系数 题目描述 给定一个多项式( ...
- Microsoft Loves Linux
微软新任CEO纳德拉提出的“Microsoft Loves Linux”,并且微软宣布.NET框架的开源,近期Microsoft不但宣布了Linux平台的SQL Server,还宣布了Microsof ...
- 5806 NanoApe Loves Sequence Ⅱ(尺取法)
传送门 NanoApe Loves Sequence Ⅱ Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/131072 K ...
- 5805 NanoApe Loves Sequence(想法题)
传送门 NanoApe Loves Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/131072 K ( ...
- CF444C. DZY Loves Colors[线段树 区间]
C. DZY Loves Colors time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
随机推荐
- (二)js基础。。。freecodecamp笔记
个人需要注意的点 当 JavaScript 中的变量被声明的时候,程序内部会给它一个初始值undefined.当你对一个值为undefined的变量进行运算操作的时候,算出来的结果将会是NaN,NaN ...
- Mybatis出现错误org.apache.ibatis.executor.ExecutorException: No constructor found in
错误显示没有发现构造器. 其实就是重写了构造器后,忘了补写一个默认的空参构造器了.此类的错误还经常出现在spring等这种大量使用反射的框架中.因为这些框架在调用反射的类后会默认调用默认的构造器 解决 ...
- JavaWeb之分页查询
时间:2016-12-11 01:41 1.分页的优点: 只查询一页,不需要查询所有数据,能够提高效率.2.分页数据 页面的数据都是由Servlet传递的 * 当前页:pageC ...
- 设计模式<一>
设计原则1.找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起. 2.针对接口编程,而不是针对实现编程. 3.多用组合,少用继承. 一:策略模式,定义了算法族,分别封装起来 ...
- Buffer和Cache的异同
Buffer的本质是缓冲,常见实例如下面这个: 对,就是铁道端头那个巨大的弹簧一类的东西.作用是万一车没停住(是没停住啊,刹车了但是差一点没刹住那种,不是不拉刹直接撞上来),撞弹簧上减速降低危险,起到 ...
- [转]dd大牛的《背包九讲》
P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...
- vmware 配置不同网段双网卡。
一.前言 需求:由于LVS演练需要,需要配置两张linux OS网卡,而且是不同网段. 准备: 物理机:单网卡 VMware:centos 6.8 二.配置 第一步:新建虚拟机VMware,cento ...
- Java同步之线程池详解
带着问题阅读 1.什么是池化,池化能带来什么好处 2.如何设计一个资源池 3.Java的线程池如何使用,Java提供了哪些内置线程池 4.线程池使用有哪些注意事项 池化技术 池化思想介绍 池化思想是将 ...
- 前后端数据交互(五)——什么是 axios?
一.什么是 axios ? axios是基于 Promise 的 ajax 封装库,也是前端目前最流行的 ajax 请求库.简单地说发送 get.post 请求,是一个轻量级的库,使用时可直接引入. ...
- Redis哨兵机制的实现及与SpringBoot的整合
1. 概述 前面我们聊过Redis的读写分离机制,这个机制有个致命的弱点,就是主节点(Master)是个单点,如果主节点宕掉,整个Redis的写操作就无法进行服务了. 为了解决这个问题,就需要依靠&q ...