qwq

我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子。

qwq

首先我们先定义几个数组

\(sw[i]\)表示\(w[i]\)的前缀和

\(val[i] = w[i]\times d[i]\)

\(sum[i]\)表示\(val[i]\)的前缀和。

\(dis[i]\)表示\(i\)到山脚下的距离

\(f[i]\)表示在\(i\)建第一个厂的最小代价。

一个比较容易发现的性质是,厂一定是建在老树的点上。

因为考虑我们在假设我们现在在一个非老树的点上,而左边的\(sw\)大于右边的\(sw\),那么我们现在向左边移动一定是更优秀的,右边大也是同理。

我们先考虑只建一个厂,也就是\(f[i]\)该如何求。

一个比较显然的递推$$f[i]=f[i-1]+sw[i-1]*d[i-1]-val[i]$$

表示在这个厂建的代价为在之前那个厂的代价+之前的树木从上个厂移动到这个厂的代价,减去这个厂下去的代价。

然后那我们应该怎么求\(g[i]\)呢,\(g[i]\)表示\(i\)之前有一个厂,且在\(i\)建第二个厂的最小代价。

\[g[i]=min(f[j]-(sw[i]-sw[j])*dis[i])
\]

这个式子表示在\(i\)这个地方建厂上,是在\(j\)的基础上,又把\(j到i\)的老树的路程进一步缩短了。

最后我们只需要输出\(min(g[i])\)即可。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1e5+1e2;
int n,m;
int w[maxn],d[maxn];
int f[maxn];
int dis[maxn],val[maxn],sum[maxn];
int sw[maxn];
struct Point{
int x,y,num;
};
Point q[maxn];
int chacheng(Point x,Point y)
{
return x.x*y.y-x.y*y.x;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=k.x-i.x;
x.y=k.y-i.y;
y.x=k.x-j.x;
y.y=k.y-j.y;
if (chacheng(x,y)<=0) return true;
return false;
}
int head=1,tail=0;
void push(Point x)
{
while (tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
void pop(int lim)
{
while(tail>=head+1 && q[head+1].y-q[head].y < lim * (q[head+1].x-q[head].x)) head++;
}
int g[maxn];
signed main()
{
n=read();
for (int i=1;i<=n;i++) w[i]=read(),d[i]=read(),dis[i]=d[i];
for (int i=n-1;i>=1;i--) dis[i]+=dis[i+1];
for (int i=1;i<=n;i++) sw[i]=sw[i-1]+w[i];
for (int i=1;i<=n;i++) val[i]=w[i]*dis[i];
for (int i=1;i<=n;i++) sum[i]=sum[i-1]+val[i];
f[0]=sum[n];
for (int i=1;i<=n;i++) f[i]=f[i-1]+sw[i-1]*d[i-1]-val[i];
push((Point){0,f[0],0});
for (int i=1;i<=n;i++)
{
pop((-1)*dis[i]);
int now = q[head].num;
g[i]=f[now]-(sw[i]-sw[now])*dis[i];
push((Point){sw[i],f[i],i});
}
int now = q[head].num;
int ans=1e18;
ans=f[0];
for (int i=1;i<=n;i++) ans=min(ans,g[i]);
cout<<ans;
return 0;
}

洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)的更多相关文章

  1. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  2. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  3. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  4. 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)

    题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...

  5. P4360 [CEOI2004]锯木厂选址

    P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...

  6. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  7. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

  8. [BZOJ2684][CEOI2004]锯木厂选址

    BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...

  9. cogs 362. [CEOI2004]锯木厂选址

    ★★★   输入文件:two.in   输出文件:two.out   简单对比 时间限制:0.1 s   内存限制:32 MB 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来. ...

随机推荐

  1. Java - 记录01_开发环境搭建

    时间:2017-07-04 记录:byzqy 一.什么是JDK JDK(Java Development Kit):Java开发工具集,即Java语言的软件开发工具包. SDK(Software De ...

  2. CPU内部结构域寄存器

    CPU内部结构域寄存器   64位和32位系统区别: 寄存器是CPU内部最基本的存储单元. CPU对外是通过总线(地址.控制.数据)来和外部设备交互的,总线的宽度是8位,同时CPU的寄存器也是8位,那 ...

  3. Python文件(File)及读写操作及生成器yield

    open函数在内存中创建缓存区,将磁盘上的内容复制到此处.文件内容读入到文件对象缓冲区后,文件对象将缓冲区视为非常大的列表,其中每个元素都有一个索引.文件对象按字节(大约每个字符)来对文件对象缓冲区索 ...

  4. JSP(Java Server Pages)内置对象

    request对象 (1)访问请求参数 处理HTTP请求中的各项参数.在这些参数中,最常用的就是获取访问请求参数.当通过超链接的形式发送请求时,可以为该请求传递参数,这可以通过在超链接的后面加上问好& ...

  5. vue 路由视图,router-view嵌套跳转

    实现功能:制作一个登录页面,跳转到首页,首页包含菜单栏.顶部导航栏.主体,标准的后台网页格式.菜单栏点击不同菜单控制主体展示不同的组件(不同的页面). 配置router-view嵌套跳转需要准备两个主 ...

  6. JS020. Array map()函数查到需要的元素时跳出遍历循环,不再执行到数组边界

    Array.prototype.map() map( )  方法创建一个 新数组 *,其结果是该数组中的每个元素是调用一次提供的 函数后的返回值 *.[ MDN / RUNOOB ] * map 添加 ...

  7. Vue设置全局cookies样式

    ''' 配置全局cookies样式 下载:cnpm install vue-cookies import cookies from 'vue-cookies' Vue.prototype.$cooki ...

  8. CommonsBeanutils1 分析笔记

    1.PropertyUtils.getProperty commons-beanutils-1.9.2.jar 包下的 PropertyUtils#getProperty方法相对于getXxx方法,取 ...

  9. 从线上日志统计接口访问量QPS

    这一阵子在面试,连续遇到好几家(大小厂都有)问我的项目线上qps的情况了,说实话,我作为一个大头兵,本来没关注过这个数据,只能含混地给个"大概.也许"的回答. 回来之后,我决定对业 ...

  10. tcpdump使用手册

    tcp使用手册 格式: tcpdump [选项] [过滤条件] 选项: -i eth0 #网卡接口 -A #以ASCII码格式阅读 -w file #下载抓取的数据包 -r file #上传数据包 - ...