Whitcomb L. Notes on Kronecker Products.

定义

Stack Operator

对于任意的矩阵\(A \in \mathbb{R}^{m \times n}\),

\[vec(A) := [A_{00}, A_{10}, \ldots, A_{m-1,n-1}]^T \in \mathbb{R}^{mn},
\]

即按列展开.

Kronecker Product

对于任意的矩阵\(A \in \mathbb{R}^{m\times n }, B \in \mathbb{R}^{p \times q}\),

\[A \otimes B :=
\left [
\begin{array}{ccc}
A_{00} \cdot B & \cdots & A_{0n-1} \cdot B \\
\vdots & \ddots & \vdots \\
A_{m-1,0} \cdot B & \cdots & A_{m-1,n-1} \cdot B
\end{array} \right ] \in \mathbb{R}^{mp \times nq}
\]

性质

Stack Operator

\[\mathrm{Tr}(A^TB) = vec(A)^T vec(B).
\]

Kronecker Product

易知,

\[[A \otimes B]_{ip+s,jq+t} = A_{i,j} \cdot B_{s,t}, \quad i\in [m], s\in[p], j \in [n], t \in [q],
\]

这里\([m] = \{0, 1, \ldots, m-1\}\).

\(a \otimes b = vec(b a^T)\)

  • \(a \in \mathbb{R}^m, b \in \mathbb{R}^n\), 则
    \[a \otimes b = vec(b a^T)
    \]

\((A \otimes B)^T = (A^T \otimes B^T)\)

\((A \otimes B)^T = (A^T \otimes B^T)\)是显然的.

\[[A \otimes B]_{*, jq+t} = A_{*,j} \otimes B_{*, t} = vec(B_{*, t} A_{*,j}^T) \\
[A \otimes B]_{ip+s, *}^T = A_{i,*}^T \otimes B_{s,*}^T = vec(B^T_{s,*} A_{i,*}).
\]

半线性

  • \(A \otimes \alpha B = \alpha A \otimes B = \alpha (A \otimes B).\)

  • \[(A+B) \otimes C = A \otimes C +B \otimes C \\
    A \otimes (B+C) = A\otimes B + A \otimes C.
    \]
  • \((A \otimes B) \otimes C=A \otimes (B\otimes C)\):

    \[\begin{array}{ll}
    (A \otimes B) \otimes C &= [A_{i,j} \cdot B_{s,t} \cdot C ]\\
    &= A \otimes (B \otimes C).
    \end{array}
    \]
  • 通常 \((A \otimes B) \not= (B \otimes A)\).

\((A \otimes B) (C\otimes D) = (AC \otimes BD)\)

\[\begin{array}{ll}
[(A \otimes B) (C\otimes D)]_{ip+s, jq+t}
&= [A \otimes B]_{ip+s, *} [C\otimes D]_{*,jq+t} \\
&= vec(B_{s, *}^TA_{i,*})^T vec(D_{*,t} C_{*,j}^T) \\
&= \mathrm{Tr}(A_{i,*}^TB_{s,*}D_{*,t} C_{*,j}^T) \\
&= \mathrm{Tr}(C_{*,j}^TA_{i,*}^TB_{s,*}D_{*,t}) \\
&= A_{i, *}C_{*,j} \cdot B_{s, *} D_{*,t} \\
&= [AC]_{ij} \cdot [BD]_{st} \\
&= [AC \otimes BD]_{ip+s,jq+t}.
\end{array}
\]

\((A \otimes B)^{-1} = (A^{-1} \otimes B^{-1})\)

条件自然是A, B为满秩方阵:

\[(A \otimes B) (A^{-1} \otimes B^{-1}) = (AA^{-1} \otimes BB^{-1}) = I
\]

\(\mathrm{det}(A_{n\times n} \otimes B_{m \times m}) = \mathrm{det}(A)^m \cdot \mathrm{det}(B)^n\)

就像用普通的高斯消去法将矩阵化为对角型一样, 在对\(A_{n\times n } \otimes B_{m\times m}\)消去的过程中可以发现, \(B\)不会产生丝毫的影响, 结果便是显而易见的了.

\(\mathrm{Tr}(A \otimes B) = \mathrm{Tr}(A) \cdot \mathrm{Tr}(B)\)

\[\mathrm{Tr}(A \otimes B) = \sum_{i=1}^m \sum_{j=1}^n A_iB_j = \mathrm{Tr}(A) \cdot \mathrm{Tr}(B).
\]

\(vec(ABC) = (C^T \otimes A) vec(B)\)

设\(A \in \mathbb{R}^{m\times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times q}\),

\[[vec(ABC)]_{jm+i} = [ABC]_{i,j} = \mathrm{Tr}(A_{i,*}BC_{*,j}) = \mathrm{Tr}(C_{*,j}A_{i,*}B)=vec(A_{i,*}^TC_{*j}^T)^T vec(B) = [C^T \otimes A]_{jm+i,*} vec(B)
\]

特例:

\[Ax = IAx = vec(IAx) = (x^T \otimes I)vec(A)
\]

这个在处理梯度的时候会比较有用:

\[y = Ax
\]

\[\mathrm{d}y = (\mathrm{d}A)x + A\mathrm{d}x = (x^T \otimes I) vec(\mathrm{d}A) + A \mathrm{d}x.
\]

Kronecker Products and Stack Operator的更多相关文章

  1. C++数据结构之Linked Stack(链式栈)

    上一节用连续的方式实现栈,这种方法用一个确定大小的数组存储栈元素,因为当存储达到数组上限时会遇到麻烦. 连续实现的栈与链式实现的栈的最大不同在于,前者使用一个确定大小的数组存储每一个栈元素,后者使用带 ...

  2. STL学习系列四:Stack容器

    Stack简介 stack是堆栈容器,是一种“先进后出”的容器. stack是简单地装饰deque容器而成为另外的一种容器. #include <stack> 1.stack对象的默认构造 ...

  3. C++STL学习笔记_(3)stack

    10.2.4stack容器 Stack简介 ²  stack是堆栈容器,是一种"先进后出"的容器. ²  stack是简单地装饰deque容器而成为另外的一种容器. ²  #inc ...

  4. STL - stack(栈)

    Stack简介 stack是堆栈容器,是一种"先进后出"的容器. stack是简单地装饰deque容器而成为另外的一种容器. #include <stack> stac ...

  5. 04--STL序列容器(Stack和Queue)

    总括: stack和queue不支持迭代 一:栈Stack (一)栈的简介 stack是堆栈容器,是一种“先进后出”的容器. stack是简单地装饰deque容器而成为另外的一种容器. (二)栈的默认 ...

  6. STL之stack容器

    1.stack容器 1) stack是堆栈容器,是一种“先进后出”的容器. 2)stack是简单地装饰deque容器而成为另外的一种容器. 3)头文件.#include <stack> 2 ...

  7. STL stack 容器

    STL stack 容器 Stack简介 stack是堆栈容器,是一种“先进后出”的容器.      stack是简单地装饰deque容器而成为另外的一种容器.      #include <s ...

  8. C++ STL 之 stack

    stack 是一种先进后出(first in last out,FILO)的数据结构,它只有一个出口,stack 只允许在栈顶新增元素,移除元素,获得顶端元素,但是除了顶端之外,其他地方不允许存取 元 ...

  9. C++ Templates (2.1 类模板Stack的实现 Implementation of Class Template Stack)

    返回完整目录 目录 2.1 类模板Stack的实现 Implementation of Class Template Stack 2.1.1 声明类模板 Declaration of Class Te ...

随机推荐

  1. 强化学习实战 | 表格型Q-Learning玩井字棋(一)

    在 强化学习实战 | 自定义Gym环境之井子棋 中,我们构建了一个井字棋环境,并进行了测试.接下来我们可以使用各种强化学习方法训练agent出棋,其中比较简单的是Q学习,Q即Q(S, a),是状态动作 ...

  2. Applescript快速入门及OmniFocus每日md报告开发

    本篇主要记录 Applescript 基础语法,以及利用 applescript 生成 omnifocus 每日报告 从 windows 转换到 macos,最近一直在不断折腾,这两天浏览 githu ...

  3. 论 Erda 的安全之道

    作者|陈建锋 来源|尔达 Erda 公众号 ​ 软件研发是一个复杂的工程,不仅需要进行软件的设计.开发.测试.运维,还涉及到大量的人力.物力管理.今天讨论的主角 - "安全",在软 ...

  4. day31 协程

    day31 协程 一.死锁与递归锁 ​ 所谓死锁:是指两个或者两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产 ...

  5. doy05循环语法学习笔记

    doy05循环语法学习笔记 一.while循环语法: 1.基本用法示例 x = 1 while x <= 5: print(x) x += 1 2.死循环:永远不结束的循环 如:while Tr ...

  6. c++ cmake及包管理工具conan简单入门

    cmake是一个跨平台的c/c++工程管理工具,可以通过cmake轻松管理我们的项目 conan是一个包管理工具,能够自动帮助我们下载及管理依赖,可以配合cmake使用 这是一个入门教程,想深入了解的 ...

  7. 2016广东工业大学新生杯决赛 A-pigofzhou的巧克力棒

    题目:GDUTOJ | pigofzhou的巧克力棒 (gdutcode.cn) 之前看了大佬博客的题解,一直没懂(我太菜了),后来听了朋友@77的讲解,终于懂了. 和拆分出2的n次方不一样,这是一种 ...

  8. 如果你不想让pthread_join阻塞你的进程,那么请调用pthread_detach

    如果你不想让pthread_join阻塞你的进程,那么请调用pthread_detach 2016年01月13日 16:04:20 炸鸡叔 阅读数:7277   转发自:http://baike.ba ...

  9. GO 数字运算

    大整数运算 // bigint project main.go package main import ( "fmt" "math" "math/bi ...

  10. 优化 if-else 代码的 8 种方案

    前言 代码中如果if-else比较多,阅读起来比较困难,维护起来也比较困难,很容易出bug,接下来,本文将介绍优化if-else代码的八种方案. 方案. 优化方案一:提前return,去除不必要的el ...