\(\mathcal{Description}\)

  给定 \(\{a_n\}\),求一个 \(\{b_{n-1}\}\),使得 \(\forall x\in\{a_n\},\exists i,j\in[1,n),b_i+b_j=x\)。输出 \(\{b_{n-1}\}\) 以及对于每个 \(x\) 所应该取的 \(i,j\),或断言不可能。

  \(n\le30\)。

\(\mathcal{Solution}\)

  原来不是构造题啊。(悲

  若 \(a\) 中有偶数 \(2k\),取一个 \(b=k\),然后随便填就好,先特判掉。

  考虑已有了 \(\{b_{n-1}\}\),对于某个 \(b_i+b_j=a_k\),在 \(b_i\) 与 \(b_j\) 之间连接一条权为 \(a_k\) 的边。显然,这些边最终构成了 \(n-1\) 个点 \(n\) 条边的图,必然存在偶环。不妨设环上的 \(b\) 为 \(b_1,b_2,\cdots,b_k\),边权为 \(a_1,a_2,\cdots,a_k\),则应有

\[\begin{cases}b_1+b_2=a_1\\b_2+b_3=a_2\\\dots\\b_k+b_1=a_k\end{cases}
\]

可以钦定 \(b_1=0\),剩下 \(k-1\) 个变量和 \(k\) 个方程,结合环的形状分析发现有解当且仅当 \(\sum_{2\mid i}a_i=\sum_{2\not\mid i}a_i\)。所以用 MiM 在 \(\{a_n\}\) 中找两个等大等和且不交的子集用于构造即可。

  假设 Hash 的复杂度为 \(\mathcal O(1)\),则最终复杂度为 \(\mathcal O(3^\frac{n}{2})\)。

\(\mathcal{Code}\)

  比较卡 qwq。

/* Clearink */

#include <cstdio>
#include <vector>
#include <cassert>
#include <cstdlib> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL; const int MAXN = 30;
const LL INF = 1e11;
int n, half, pwr[20], ans[MAXN + 5];
LL a[MAXN + 5], b[MAXN + 5]; static const int M = 100000037, MAXND = 1.5e7;
int node, head[M], val[MAXND], nxt[MAXND];
LL key[MAXND]; inline int& get( const LL k ) {
int r = head[( k % M + M ) % M], las = -1;
for ( ; r && key[r] != k; r = nxt[las = r] );
if ( r ) return val[r];
if ( !~las ) head[( k % M + M ) % M] = r = ++node;
else nxt[las] = r = ++node;
return key[r] = k, val[r] = -1;
} inline bool count( const LL k ) {
int r = head[( k % M + M ) % M], las = -1;
for ( ; r && key[r] != k; r = nxt[las = r] );
return !!r;
} inline void solve( const int s1, const int s2 ) {
std::vector<int> pos, neg;
rep ( i, 1, half ) {
int f = s1 / pwr[half - i] % 3;
if ( f == 1 ) pos.push_back( i );
else if ( f ) neg.push_back( i );
}
rep ( i, half + 1, n ) {
int f = s2 / pwr[n - i] % 3;
if ( f == 1 ) neg.push_back( i );
else if ( f ) pos.push_back( i );
} assert( pos.size() == neg.size() ); int s = pos.size();
b[1] = 0;
rep ( i, 2, s << 1 ) {
if ( !( i & 1 ) ) {
b[i] = a[pos[( i >> 1 ) - 1]] - b[i - 1];
ans[pos[( i >> 1 ) - 1]] = i - 1;
} else {
b[i] = a[neg[( i >> 1 ) - 1]] - b[i - 1];
ans[neg[( i >> 1 ) - 1]] = i - 1;
}
}
ans[neg[s - 1]] = s << 1;
b[0] = s << 1; rep ( i, 1, n ) if ( !ans[i] ) {
b[++b[0]] = a[i], ans[i] = -b[0];
} puts( "Yes" );
rep ( i, 1, n ) printf( "%lld%c", b[i], i < n ? ' ' : '\n' );
rep ( i, 1, n ) {
if ( ans[i] > 0 ) {
if ( ans[i] < s << 1 ) printf( "%d %d\n", ans[i], ans[i] + 1 );
else printf( "%d 1\n", s << 1 );
} else {
printf( "1 %d\n", -ans[i] );
}
}
} inline void dfs1( const int l, const int r, const int sta, const LL sum ) {
if ( l > r ) return void( get( sum ) = sta );
dfs1( l + 1, r, sta * 3, sum );
dfs1( l + 1, r, sta * 3 + 1, sum + a[l] + INF );
dfs1( l + 1, r, sta * 3 + 2, sum - a[l] - INF );
} inline void dfs2( const int l, const int r, const int sta, const LL sum ) {
if ( l > r ) {
if ( sum && count( -sum ) ) solve( get( sum ), sta ), exit( 0 );
return ;
}
dfs2( l + 1, r, sta * 3, sum );
dfs2( l + 1, r, sta * 3 + 1, sum + a[l] + INF );
dfs2( l + 1, r, sta * 3 + 2, sum - a[l] - INF );
} int main() {
freopen( "problemsetter.in", "r", stdin );
freopen( "problemsetter.out", "w", stdout ); scanf( "%d", &n );
rep ( i, 1, n ) scanf( "%lld", &a[i] ); if ( n == 1 ) {
if ( a[1] % 2 ) puts( "No" );
else printf( "Yes\n%lld\n1 1\n", a[1] / 2 );
return 0;
} rep ( i, 1, n ) if ( !( a[i] % 2 ) ) {
printf( "Yes\n%lld", a[i] / 2 );
rep ( j, 1, n ) if ( i != j ) printf( " %lld", a[j] - ( a[i] / 2 ) );
putchar( '\n' );
rep ( j, 1, n ) {
if ( i == j ) puts( "1 1" );
else printf( "1 %d\n", j + ( j < i ) );
}
return 0;
} half = n + 1 >> 1, pwr[0] = 1;
rep ( i, 1, half ) pwr[i] = pwr[i - 1] * 3; dfs1( 1, half, 0, 0 );
dfs2( half + 1, n, 0, 0 ); puts( "No" );
return 0;
}

Solution -「NOI 模拟赛」出题人的更多相关文章

  1. Solution -「NOI 模拟赛」彩色挂饰

    \(\mathcal{Description}\)   给定一个含 \(n\) 个点 \(m\) 条边的简单无向图,设图中最大点双的大小为 \(s\),则保证 \(s\le6\).你将要用 \(k\) ...

  2. 「CSP-S模拟赛」2019第四场

    「CSP-S模拟赛」2019第四场 T1 「JOI 2014 Final」JOI 徽章 题目 考场思考(正解) T2 「JOI 2015 Final」分蛋糕 2 题目 考场思考(正解) T3 「CQO ...

  3. 「NOIP模拟赛」数位和乘积(dp,高精)

    统计方案数,要么组合数,要么递推(dp)了. 这是有模拟赛历史以来爆炸最狠的一次 T1写了正解,也想到开long long,但是开错了地方然后数组开大了结果100->0 T3看错题本来简单模拟又 ...

  4. 「CSP-S模拟赛」2019第三场

    目录 T1 「POI2007」山峰和山谷 Ridges and Valleys 题目 考场思路(几近正解) 正解 T2 「JOI 2013 Final」 现代豪宅 题目 考场思路(正解) T3 「SC ...

  5. 「CSP-S模拟赛」2019第二场

    目录 T1 Jam的计数法 题目 考场思路(正解) T2 「TJOI / HEOI2016」排序 题目 考场思路(假正解) 正解 T3 「THUWC 2017」随机二分图 题目 考场思路 正解 这场考 ...

  6. 「CSP-S模拟赛」2019第一场

    目录 T1 小奇取石子 题目 考场思路 正解 T2 「CCO 2017」专业网络 题目 考场思路 题解 T3 「ZJOI2017」线段树 题目 考场思路 正解 这场考试感觉很奇怪. \(T1.T2\) ...

  7. 「2018-11-05模拟赛」T5 传送机 解题报告

    5.传送机(sent.*) 问题描述: 黄黄同学要到清华大学上学去了.黄黄同学很喜欢清华大学的校园,每次去上课时总喜欢把校园里面的每条路都走一遍,当然,黄黄同学想每条路也只走一遍. 我们一般人很可能对 ...

  8. 「NOIP模拟赛」Round 3

    Tag 计数+LIS, 二分+ST表, 计数+记搜 A. 改造二叉树 Description 题面 Solution 如果目标序列非严格递增,或者说目标序列是不下降的,那么答案就是 \(n\) 减去最 ...

  9. HHHOJ #153. 「NOI模拟 #2」Kotomi

    抽代的成分远远大于OI的成分 首先把一个点定为原点,然后我们发现如果我们不旋转此时答案就是所有位置的\(\gcd\) 如果要选择怎么办,我们考虑把我们选定的网格边连同方向和大小看做单位向量\(\vec ...

随机推荐

  1. PyCharm撤消/恢复

    PyCharm在撤消/重做的每个步骤之前移动插入符号,然后执行撤消/重做操作. 要撤消操作,请执行以下操作之一: 在主菜单上,选择Edit | Undo. 按Ctrl+Z. 要恢复操作,请执行以下操作 ...

  2. react中Fragment组件

    什么是Fragment?在我们定义组件的时候return里最外层包裹的div往往不想渲染到页面,那么就要用到我们的Fragment组件了,具体使用如下: import React, { Compone ...

  3. mybatis(CRUD)

    3.mybatis(CRUD) 有了mybatis,我们要对数据库进行增删改查只需要操作接口和mapper.xml文件,然后进行测试就可以了. 实例代码如下: 接口 public interface ...

  4. JVM调优2-远程监控

    监控远程JVM VisualJVM不仅是可以监控本地jvm进程,还可以监控远程的jvm进程,需要借助于JMX技术实现. 什么是JMX JMX(Java Management Extensions,即J ...

  5. java-异常-异常注意事项

    1 package p1.exception; 2 3 /* 4 * 异常的注意事项: 5 * 6 * 1,子类在覆盖父类方法时,父类的方法如果抛出了异常, 7 * 那么子类的方法只能抛出父类的异常或 ...

  6. Error:(3, 21) java: 程序包javax.servlet不存在的解决方法

    采用 https://blog.csdn.net/GK666_/article/details/106442929得到解决

  7. 进程(守护进程--互斥锁--IPC机制--生产者模型--僵尸进程与孤儿进程--模拟抢票--消息队列)

    目录 一:进程理论知识 1.理论知识 二:什么是进程? 三:僵尸进程与孤儿进程 1.僵尸进程 四:守护进程 1.什么是守护进程? 2.主进程创建守护进程 3.守护进程 五:互斥锁(模拟多人抢票) 1. ...

  8. rm误操作 which查看命令存放路径

    目录 一:rm误操作 which查看命令存放路径 一:rm误操作 which查看命令存放路径 解决rm命令误操作 让别人使用不了自己的rm命令 将rm命令改一个名称 mv rm abc 查看命令存放路 ...

  9. K8s 资源配额管理对象 ResourcesQuota

    Kubernetes 是一个多租户平台,更是一个镜像集群管理工具.一个 Kubernetes 集群中的资源一般是由多个团队共享的,这时候经常要考虑的是如何对这个整体资源进行分配.在 kubernete ...

  10. python利用正则表达式提取文本中特定内容

    正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配. Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式. re 模块使 Python ...