Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡
\(\mathcal{Description}\)
link.
有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树。对 \(10^9+7\) 取模。
\(2\le n\le17\),边集大小 \(0\le m_i\le\frac{n(n-1)}2\)。
\(\mathcal{Solution}\)
\(n\) 很小,考虑容斥。枚举这 \(n-1\) 个边集的子集,将子集内的边集的边加入图,用矩阵树定理求出生成树个数,容斥一下就好啦。复杂度 \(\mathcal O(2^nn^3)\)。
\(\mathcal{Code}\)
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
const int MAXN = 17, MOD = 1e9 + 7;
int n, m, d[MAXN + 5][MAXN + 5];
std::vector<std::pair<int, int> > able[MAXN + 5];
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
inline int det ( int d[MAXN + 5][MAXN + 5] ) {
int ret = 1, swp = 1;
for ( int i = 1; i < n; ++ i ) {
for ( int j = i; j < n; ++ j ) {
if ( d[j][i] ) {
if ( i ^ j ) std::swap ( d[i], d[j] ), swp *= -1;
break;
}
}
if ( ! d[i][i] ) return 0;
ret = 1ll * ret * d[i][i] % MOD;
int inv = qkpow ( d[i][i], MOD - 2 );
for ( int j = i + 1; j < n; ++ j ) {
int c = 1ll * inv * d[j][i] % MOD;
for ( int k = i; k < n; ++ k ) d[j][k] = ( d[j][k] - 1ll * c * d[i][k] % MOD + MOD ) % MOD;
}
}
return ( ret * swp + MOD ) % MOD;
}
int main () {
scanf ( "%d", &n );
for ( int i = 1, m; i < n; ++ i ) {
scanf ( "%d", &m );
for ( int u, v; m --; ) {
scanf ( "%d %d", &u, &v );
able[i].push_back ( { u, v } );
}
}
int ans = 0;
for ( int s = 1; s < 1 << n >> 1; ++ s ) {
int bit = 0; memset ( d, 0, sizeof d );
for ( int i = 1; i < n; ++ i ) {
if ( ( s >> i - 1 ) & 1 ) {
++ bit;
for ( int j = 0; j ^ able[i].size (); ++ j ) {
int u = able[i][j].first, v = able[i][j].second;
++ d[u][u], ++ d[v][v], -- d[u][v], -- d[v][u];
if ( d[u][v] < 0 ) d[u][v] += MOD;
if ( d[v][u] < 0 ) d[v][u] += MOD;
}
}
}
ans = ( ans + ( ( bit & 1 ) ^ ( n & 1 ) ? det ( d ) : -det ( d ) ) ) % MOD;
}
printf ( "%d\n", ( ans + MOD ) % MOD );
return 0;
}
Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡的更多相关文章
- 「SHOI2016」黑暗前的幻想乡 解题报告
「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...
- P4336 [SHOI2016]黑暗前的幻想乡
P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
[BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...
- bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)
bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...
- [LOJ2027] [SHOI2016] 黑暗前的幻想乡
题目链接 LOJ:https://loj.ac/problem/2027 洛谷:https://www.luogu.org/problemnew/show/P4336 Solution 这题很像[ZJ ...
- BZOJ4596:[SHOI2016]黑暗前的幻想乡——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4596 https://www.luogu.org/problemnew/show/P4336#su ...
随机推荐
- Ant 调用 Shell/CMD 命令
Ant中调用Makefile,使用shell中的make命令 <?xml version="1.0" encoding="utf-8" ?> < ...
- MySQL 表字段唯一性约束设置方法unique
1. 建表时加上唯一性约束 CREATE TABLE `t_user` ( `Id` int(11) NOT NULL AUTO_INCREMENT, -- 自增 `username` varchar ...
- Thrift框架-安装
1.前言 今天接触了使用 PRC[远程过程调用协议]的Thrift 框架 ,留下随笔心得,这是安装篇 2.下载 去apache官网下载Thrift脚本编译程序,window则下载一个exe文件,然后 ...
- 《手把手教你》系列技巧篇(五十六)-java+ selenium自动化测试-下载文件-上篇(详细教程)
1.简介 前边几篇文章讲解完如何上传文件,既然有上传,那么就可能会有下载文件.因此宏哥就接着讲解和分享一下:自动化测试下载文件.可能有的小伙伴或者童鞋们会觉得这不是很简单吗,还用你介绍和讲解啊,不说就 ...
- Sharding Sphere的分库分表
什么是 ShardingSphere? 1.一套开源的分布式数据库中间件解决方案 2.有三个产品:Sharding-JDBC 和 Sharding-Proxy 3.定位为关系型数据库中间件,合理在分布 ...
- UDP代码编写、操作系统发展史、多道技术、进程理论与代码层面创建、进程join方法与进程对象方法
昨日内容回顾 socket基本使用 # 内置的模块 import socket s = socket.socket() # 默认是TCP协议 也可以切换为UDP协议 s.bind((ip,port)) ...
- 关于包装类Integer,Long比较用==和equals的问题
所有整型包装类对象之间值的比较,全部使用 equals 方法比较. 说明:对于 Integer var = ? 在-128 至 127 之间的赋值,Integer 对象是在 IntegerCache. ...
- 1000粉!使用Three.js制作一个专属3D奖牌🥇
背景 破防了 !突然发现 SegmentFault 平台的粉丝数量已经突破 1000 了,它是我的三个博客平台掘金.博客园.SegmentFault中首个粉丝突破 1000 的,于是设计开发这个页面, ...
- python数据操作--8
转:https://www.tuicool.com/wx/MB7nieb 数据类型 整数, 浮点数, 字符串, 布林值(True,False) 列表(list), 不可变的列表 Tuple, 集合(没 ...
- Solaris平台,如何通过端口号快速查看PID(进程)
1. vi /tmp/test.ksh #!/bin/ksh line='---------------------------------------------' pids=$(/usr/bin/ ...