(线性结构dp )POJ 1260 Pearls
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 10558 | Accepted: 5489 |
Description
Every month the stock manager of The Royal Pearl prepares a list with the number of pearls needed in each quality class. The pearls are bought on the local pearl market. Each quality class has its own price per pearl, but for every complete deal in a certain quality class one has to pay an extra amount of money equal to ten pearls in that class. This is to prevent tourists from buying just one pearl.
Also The Royal Pearl is suffering from the slow-down of the global economy. Therefore the company needs to be more efficient. The CFO (chief financial officer) has discovered that he can sometimes save money by buying pearls in a higher quality class than is actually needed.No customer will blame The Royal Pearl for putting better pearls in the bracelets, as long as the
prices remain the same.
For example 5 pearls are needed in the 10 Euro category and 100 pearls are needed in the 20 Euro category. That will normally cost: (5+10)*10+(100+10)*20 = 2350 Euro.Buying all 105 pearls in the 20 Euro category only costs: (5+100+10)*20 = 2300 Euro.
The problem is that it requires a lot of computing work before the CFO knows how many pearls can best be bought in a higher quality class. You are asked to help The Royal Pearl with a computer program.
Given a list with the number of pearls and the price per pearl in different quality classes, give the lowest possible price needed to buy everything on the list. Pearls can be bought in the requested,or in a higher quality class, but not in a lower one.
Input
The second number is the price per pearl pi in that class (1 <= pi <= 1000). The qualities of the classes (and so the prices) are given in ascending order. All numbers in the input are integers.
Output
Sample Input
2
2
100 1
100 2
3
1 10
1 11
100 12
Sample Output
330
1344 状态转移式为:dp[i] = min(dp[j] + (sum[i]- sum[j] + 10) * p[i]) 打表就行,递推好像也行。注意不能用sort()等等排序函数,会WA的,注意sum[i]为前i中珍珠的总数量。并不是第i种数量。
可以用结构体,也可以用pair。与UVA11400 的 Lighting System Design题相似
C++代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn = ;
typedef pair<int,int> pii;
pii sen[maxn];
int sum1[maxn];
int dp[maxn];
int main(){
int T;
scanf("%d",&T);
while(T--){
int c;
scanf("%d",&c);
memset(dp,0x3f3f3f3f,sizeof(dp));
dp[] = ;
for(int i = ; i <= c; i++){
cin>>sen[i].first>>sen[i].second;
}
// sort(sen,sen + c);
memset(sum1,,sizeof(sum1));
for(int i = ; i <= c; i++){
sum1[i] = sen[i].first + sum1[i-];
}
for(int i = ; i <= c; i++){
for(int j = ; j < i; j++){
dp[i] = min(dp[i],dp[j] + (sum1[i] - sum1[j] + ) * sen[i].second);
}
}
printf("%d\n",dp[c]);
}
return ;
}
(线性结构dp )POJ 1260 Pearls的更多相关文章
- POJ 1260 Pearls 简单dp
1.POJ 1260 2.链接:http://poj.org/problem?id=1260 3.总结:不太懂dp,看了题解 http://www.cnblogs.com/lyy289065406/a ...
- poj 1260 Pearls(dp)
题目:http://poj.org/problem?id=1260 题意:给出几类珍珠,以及它们的单价,要求用最少的钱就可以买到相同数量的,相同(或更高)质量的珍珠. 珍珠的替代必须是连续的,不能跳跃 ...
- POJ 1260 Pearls (斜率DP)题解
思路: 直接DP也能做,这里用斜率DP. dp[i] = min{ dp[j] + ( sum[i] - sum[j] + 10 )*pr[i]} ; k<j<i => dp[j ...
- poj 1260 Pearls 斜率优化dp
这个题目数据量很小,但是满足斜率优化的条件,可以用斜率优化dp来做. 要注意的地方,0也是一个决策点. #include <iostream> #include <cstdio> ...
- POJ 1260 Pearls
Pearls Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6670 Accepted: 3248 Description In ...
- POJ 1260 Pearls (动规)
Pearls Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7210 Accepted: 3543 Description In ...
- POJ 1260:Pearls(DP)
http://poj.org/problem?id=1260 Pearls Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8 ...
- D_S 线性结构
线性结构的定义:若结构是非空有限集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前驱和一个直接后继. 线性结构的特点: 只有一个首结点和尾结点 除首尾结点外,其他结点只有一个直 ...
- java数据结构--线性结构
一.数据结构 数据结构由数据和结构两部分组成,就是将数据按照一定的结构组合起来,这样不同的组合方式有不同的效率,可根据需求选择不同的结构应用在相应在场景.数据结构大致 分为两类:线性结构(如数组,链表 ...
随机推荐
- LodopJS代码模版的加载和赋值
Lodop模版有两种方法,一种是传统的JS语句,可以用JS方法里的eval来执行,一种是文档式模版,是特殊格式的base64码,此篇博文介绍JS模版的加载和赋值.两种模版都可以存入一下地方进行调用,比 ...
- asp.net—WebApi跨域
一.什么是跨域? 定义:是指浏览器不能执行其他网站的脚本,它是由浏览器的同源策略造成的,是浏览器对JavaScript实施的安全限制. 同源策略限制了以下行为: 1.Cookie.LocalStora ...
- Modeling Filters and Whitening Filters
Colored and White Process White Process White Process,又称为White Noise(白噪声),其中white来源于白光,寓意着PSD的平坦分布,w ...
- vi简短教程
1.模式 命令行模式:光标的移动.内容删除移动复制操作 插入模式:文字输入,即编辑状态 底行模式:文件保存或退出vi,设置编辑环境 2.基本操作 vi myfile,输入vi 文件名,则进入vi. 3 ...
- henrylee2cn简单的rpc服务
server 端package controllers import ( "github.com/henrylee2cn/teleport" "model/system& ...
- django中怎么使用自定义管理后台xadmin
django中怎么使用自定义管理后台xadmin 2018年05月19日 15:48:08 LH_python 阅读数:1001 首先创建基本的django项目,配置好基本的model ,url, ...
- Codeforces1101F Trucks and Cities 【滑动窗口】【区间DP】
题目分析: 2500的题目为什么我想了这么久... 考虑答案是什么.对于一辆从$s$到$t$的车,它有$k$次加油的机会.可以发现实际上是将$s$到$t$的路径以城市为端点最多划分为最大长度最小的$k ...
- 【BZOJ2431】【HAOI2009】逆序对数列 DP
题目大意 问你有多少个由\(n\)个数组成的,逆序对个数为\(k\)的排列. \(n,k\leq 1000\) 题解 我们考虑从小到大插入这\(n\)个数. 设当前插入了\(i\)个数,插入下一个数可 ...
- LOJ #2234. 「JLOI2014」聪明的燕姿(搜索 + 数论)
题意 给出一个数 \(S\) ,输出所有约数和等于 \(S\) 的数. \(S \le 2 \times 10^9\) ,数据组数 \(\le 100\) . 题解 首先用约数和定理: \[ \beg ...
- 05 Zabbix4.0触发器表达式Trigger expression支持的函数
点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 05 Zabbix4.0触发器表达式Trigger expression支持的函数 所有函数返回值 ...