bzoj4152-[AMPPZ2014]The_Captain
Description
给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。
Input
第一行包含一个正整数n(2<=n<=200000),表示点数。
接下来n行,每行包含两个整数x[i],yi,依次表示每个点的坐标。
Output
一个整数,即最小费用。
Sample Input
5
2 2
1 1
4 5
7 1
6 7
Sample Output
2
Solution
定义 \(d_{i,j} = min(x_i - x_j, y_i - y_j)\).
当 \(x_i <= x_j <= x_k\), 发现 \(d_{i,k} >= d_{i,j} + d_{j,k}\). \(y\) 同理.
因此, 将x轴排序, 将x坐标相邻的点相连, y轴同理. 求1到n最短路即可.
Code
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll;
//---------------------------------------
const int nsz=2e5+50;
const ll ninf=1e17;
int n;
struct tp{int p,x,y;}line[nsz];
bool cmp1(tp a,tp b){return a.x<b.x;}
bool cmp2(tp a,tp b){return a.y<b.y;}
int dis(int a,int b){return min(abs(line[a].x-line[b].x),abs(line[a].y-line[b].y));}
struct te{int t,v,pr;}edge[nsz*4];
int hd[nsz],pe=1;
void adde(int f,int t,int v){edge[++pe]=(te){t,v,hd[f]};hd[f]=pe;}
void adddb(int f,int t,int v){adde(f,t,v);adde(t,f,v);}
ll mind[nsz],vi[nsz];
struct tnd{ll v,d;};
bool operator<(tnd a,tnd b){return a.d>b.d;}
void dij(int f){
priority_queue<tnd> pq;
rep(i,1,n)mind[i]=ninf,vi[i]=0;
mind[f]=0,pq.push((tnd){f,0});
int u,d2;
while(!pq.empty()){
u=pq.top().v;pq.pop();
if(vi[u])continue;
vi[u]=1;
for(int i=hd[u],v;i;i=edge[i].pr){
v=edge[i].t,d2=mind[u]+edge[i].v;
if(mind[v]>d2){
mind[v]=d2;
pq.push((tnd){v,mind[v]});
}
}
}
}
int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>n;
rep(i,1,n)cin>>line[i].x>>line[i].y,line[i].p=i;
sort(line+1,line+n+1,cmp1);
rep(i,1,n-1)adddb(line[i].p,line[i+1].p,dis(i,i+1));
sort(line+1,line+n+1,cmp2);
rep(i,1,n-1)adddb(line[i].p,line[i+1].p,dis(i,i+1));
dij(1);
cout<<mind[n]<<'\n';
return 0;
}
bzoj4152-[AMPPZ2014]The_Captain的更多相关文章
- BZOJ4152 AMPPZ2014 The Captain 【最短路】【贪心】*
BZOJ4152 AMPPZ2014 The Captain Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点 ...
- bzoj4152[AMPPZ2014]The Captain 最短路
4152: [AMPPZ2014]The Captain Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1517 Solved: 603[Submi ...
- BZOJ4152 AMPPZ2014 The Captain(最短路)
事实上每次走到横坐标或纵坐标最接近的点一定可以取得最优方案.于是这样连边跑最短路就可以了. #include<iostream> #include<cstdio> #inclu ...
- bzoj4152 [AMPPZ2014]The Captain
最短路,先将x排序,然后把排序后权值相邻的点连边,再把y排序,也把权值相邻的点连边,求一遍1到n的最短路就好啦. 代码 #include<cstdio> #include<queue ...
- 【ACM】那些年,我们挖(WA)过的最短路
不定时更新博客,该博客仅仅是一篇关于最短路的题集,题目顺序随机. 算法思想什么的,我就随便说(复)说(制)咯: Dijkstra算法:以起始点为中心向外层层扩展,直到扩展到终点为止.有贪心的意思. 大 ...
- 【BZOJ4152】[AMPPZ2014]The Captain 最短路
[BZOJ4152][AMPPZ2014]The Captain Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1 ...
- BZOJ4152:[AMPPZ2014]The Captain——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4152 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1 ...
- 【bzoj4152】[AMPPZ2014]The Captain 堆优化Dijkstra
题目描述 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. 输入 第一行包含一个正整数n(2<=n< ...
- BZOJ 4144: [AMPPZ2014]Petrol
4144: [AMPPZ2014]Petrol Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 457 Solved: 170[Submit][Sta ...
- 循环队列+堆优化dijkstra最短路 BZOJ 4152: [AMPPZ2014]The Captain
循环队列基础知识 1.循环队列需要几个参数来确定 循环队列需要2个参数,front和rear 2.循环队列各个参数的含义 (1)队列初始化时,front和rear值都为零: (2)当队列不为空时,fr ...
随机推荐
- Linux进程管理 (1)进程的诞生
专题:Linux进程管理专题 目录: Linux进程管理 (1)进程的诞生 Linux进程管理 (2)CFS调度器 Linux进程管理 (3)SMP负载均衡 Linux进程管理 (4)HMP调度器 L ...
- ReactJs入门教程-精华版
原文地址:https://www.cnblogs.com/Leo_wl/p/4489197.html阅读目录 ReactJs入门教程-精华版 回到目录 ReactJs入门教程-精华版 现在最热门的前端 ...
- JDK命令行(jps、jstat、jinfo、jmap、jhat、jstack、jstatd、hprof)与JConsole
很多资料在介绍JDK命令行工具时并不是在Java8环境下,因此还在使用过时的永久区系列的参数,给一些读者造成困难. Java8使用Metaspace(元空间)代替永久区,对于64位平台,为了压缩JVM ...
- Java面试MySQL的一些问题
MySQL InnoDB存储的文件结构 索引树是如何维护的? 数据库自增主键可能的问题
- Item 14: 如果函数不会抛出异常就把它们声明为noexcept
本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 在C++98中,异常规范(exception specificat ...
- python--递归(附利用栈和队列模拟递归)
博客地址:http://www.cnblogs.com/yudanqu/ 一.递归 递归调用:一个函数,调用的自身,称为递归调用 递归函数:一个可以调用自身的函数称为递归函数 凡是循环能干的事,递归都 ...
- Windows 10 配置Linux及安装Docker
https://baijiahao.baidu.com/s?id=1607159570058814753&wfr=spider&for=pc https://blog.csdn.net ...
- c++入门之出话指针和地址。
指针和地址是c和c++中重要的概念,在此,对指针做以下几方面的总结: new和delete: ]; point[] = ; point[] = ; point[] = ; cout << ...
- Notepad++远程连接Linux系统
首先在官网下载 https://notepad-plus-plus.org/news/notepad-7.6.4-released.html 在命令行数输入ifconfig 查看自己的Linux的ip ...
- 【学习总结】Git学习-参考廖雪峰老师教程六-分支管理
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...