Description

给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。

Input

第一行包含一个正整数n(2<=n<=200000),表示点数。

接下来n行,每行包含两个整数x[i],yi,依次表示每个点的坐标。

Output

一个整数,即最小费用。

Sample Input

5

2 2

1 1

4 5

7 1

6 7

Sample Output

2

Solution

定义 \(d_{i,j} = min(x_i - x_j, y_i - y_j)\).

当 \(x_i <= x_j <= x_k\), 发现 \(d_{i,k} >= d_{i,j} + d_{j,k}\). \(y\) 同理.

因此, 将x轴排序, 将x坐标相邻的点相连, y轴同理. 求1到n最短路即可.

Code

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll; //---------------------------------------
const int nsz=2e5+50;
const ll ninf=1e17; int n;
struct tp{int p,x,y;}line[nsz];
bool cmp1(tp a,tp b){return a.x<b.x;}
bool cmp2(tp a,tp b){return a.y<b.y;}
int dis(int a,int b){return min(abs(line[a].x-line[b].x),abs(line[a].y-line[b].y));} struct te{int t,v,pr;}edge[nsz*4];
int hd[nsz],pe=1;
void adde(int f,int t,int v){edge[++pe]=(te){t,v,hd[f]};hd[f]=pe;}
void adddb(int f,int t,int v){adde(f,t,v);adde(t,f,v);} ll mind[nsz],vi[nsz];
struct tnd{ll v,d;};
bool operator<(tnd a,tnd b){return a.d>b.d;}
void dij(int f){
priority_queue<tnd> pq;
rep(i,1,n)mind[i]=ninf,vi[i]=0;
mind[f]=0,pq.push((tnd){f,0});
int u,d2;
while(!pq.empty()){
u=pq.top().v;pq.pop();
if(vi[u])continue;
vi[u]=1;
for(int i=hd[u],v;i;i=edge[i].pr){
v=edge[i].t,d2=mind[u]+edge[i].v;
if(mind[v]>d2){
mind[v]=d2;
pq.push((tnd){v,mind[v]});
}
}
}
}
int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>n;
rep(i,1,n)cin>>line[i].x>>line[i].y,line[i].p=i;
sort(line+1,line+n+1,cmp1);
rep(i,1,n-1)adddb(line[i].p,line[i+1].p,dis(i,i+1));
sort(line+1,line+n+1,cmp2);
rep(i,1,n-1)adddb(line[i].p,line[i+1].p,dis(i,i+1));
dij(1);
cout<<mind[n]<<'\n';
return 0;
}

bzoj4152-[AMPPZ2014]The_Captain的更多相关文章

  1. BZOJ4152 AMPPZ2014 The Captain 【最短路】【贪心】*

    BZOJ4152 AMPPZ2014 The Captain Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点 ...

  2. bzoj4152[AMPPZ2014]The Captain 最短路

    4152: [AMPPZ2014]The Captain Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1517  Solved: 603[Submi ...

  3. BZOJ4152 AMPPZ2014 The Captain(最短路)

    事实上每次走到横坐标或纵坐标最接近的点一定可以取得最优方案.于是这样连边跑最短路就可以了. #include<iostream> #include<cstdio> #inclu ...

  4. bzoj4152 [AMPPZ2014]The Captain

    最短路,先将x排序,然后把排序后权值相邻的点连边,再把y排序,也把权值相邻的点连边,求一遍1到n的最短路就好啦. 代码 #include<cstdio> #include<queue ...

  5. 【ACM】那些年,我们挖(WA)过的最短路

    不定时更新博客,该博客仅仅是一篇关于最短路的题集,题目顺序随机. 算法思想什么的,我就随便说(复)说(制)咯: Dijkstra算法:以起始点为中心向外层层扩展,直到扩展到终点为止.有贪心的意思. 大 ...

  6. 【BZOJ4152】[AMPPZ2014]The Captain 最短路

    [BZOJ4152][AMPPZ2014]The Captain Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1 ...

  7. BZOJ4152:[AMPPZ2014]The Captain——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4152 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1 ...

  8. 【bzoj4152】[AMPPZ2014]The Captain 堆优化Dijkstra

    题目描述 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. 输入 第一行包含一个正整数n(2<=n< ...

  9. BZOJ 4144: [AMPPZ2014]Petrol

    4144: [AMPPZ2014]Petrol Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 457  Solved: 170[Submit][Sta ...

  10. 循环队列+堆优化dijkstra最短路 BZOJ 4152: [AMPPZ2014]The Captain

    循环队列基础知识 1.循环队列需要几个参数来确定 循环队列需要2个参数,front和rear 2.循环队列各个参数的含义 (1)队列初始化时,front和rear值都为零: (2)当队列不为空时,fr ...

随机推荐

  1. Feature Extractor[batch normalization]

    1 - 背景 摘要:因为随着前面层的参数的改变会导致后面层得到的输入数据的分布也会不断地改变,从而训练dnn变得麻烦.那么通过降低学习率和小心地参数初始化又会减慢训练过程,而且会使得具有饱和非线性模型 ...

  2. C#邮件发送类 简单实用 可自定义发件人名称

    上图看效果 MailHelper: public class MailHelper { public bool SendMail(MailSender sender,out string errorM ...

  3. FineUI经典项目展示(1)生产在线管理系统

    本系列<FineUI经典项目展示>文章将会集中展示一批使用FineUI(开源版).专业版.MVC版的经典项目. 如果你希望自己的FineUI项目出现在这个舞台,请到官网论坛提交申请: ht ...

  4. IDEA+Maven+Tomcat构建项目流程

    0.准备 本文主要解决在IDEA上开发Maven-webapp项目关联Tomcat的问题. 首先,确保本地计算机下载解压了Tomcat压缩包,以及配置好了Java环境. 1.新建Mavne项目 2.I ...

  5. 教你使用HTML5原生对话框元素,轻松创建模态框组件

    HTML 5.2草案加入了新的dialog元素.但是是一种实验技术. 以前,如果我们想要构建任何形式的模式对话框或对话框,我们需要有一个背景,一个关闭按钮,将事件绑定在对话框中的方式安排我们的标记,找 ...

  6. python 操作数据库

    官方文档:https://www.python.org/dev/peps/pep-0249/ 1.创建connection,建立网络连接 MySQLdb.Connect(host,port,user, ...

  7. OM1、OM2、OM3和OM4光纤之间的区别

    “OM”stand for optical multi-mode,即光模式,是多模光纤表示光纤等级的标准.不同等级传输时的带宽和最大距离不同,从以下几个方面分析它们之间的区别.  一.OM1.OM2. ...

  8. Python入门-Hello Word

    1.python语言介绍 Python创始人:Guido Van Rossum 2.python是一种解释型.动态类型计算机程序设计语言. 解释型:程序无需编译成二进制代码,而是在执行时对语句一条一条 ...

  9. CentOS7源码升级OpenSSL和OpenSSH

    一.CentOS7升级OpenSSL 1.查看ssl版本及下载相关依赖包 openssl version -a yum install -y gcc openssl-devel pam-devel r ...

  10. MySQL分页时统计总记录行数并使用limit返回固定数目的记录

    需求很简单:假设有一个user表,表中实际上有10000条数据,但是我不知道有多少条,我要从数据库中每次取20条数据显示,那么怎么完成呢? 方案一: 首先执行一个 select count(*) as ...