ThreadPoolExecutor是可扩展的,其提供了几个可在子类化中改写的方法,如下:

protected void beforeExecute(Thread t, Runnable r) { }
protected void afterExecute(Runnable r, Throwable t) { }
protected void terminated() { }

  现基于此,完成一个统计每个线程执行耗时,并计算平均耗时的 自定义线程池样例。通过 beforeExecute、afterExecute、terminated 方法来添加日志记录和统计信息收集。为了测量任务的运行时间,beforeExecute必须记录开始时间并把它保存到一个ThreadLocal变量中,然后由afterExecute来读取。同时,使用两个 AtomicLong变量,分别用以记录已处理的任务数和总的处理时间,并通过terminated来输出包含平均任务时间的日志消息。

  自定义线程池代码如下:

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.util.logging.Logger; /**
* 自定义线程池
*/
public class TimingThreadPool extends ThreadPoolExecutor { private final ThreadLocal<Long> startTime = new ThreadLocal<>();
private final Logger log = Logger.getLogger("TimingThreadPool");
private final AtomicLong numTasks = new AtomicLong();
private final AtomicLong totalTime = new AtomicLong(); public TimingThreadPool(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
} @Override
protected void beforeExecute(Thread t, Runnable r) {
super.beforeExecute(t, r);
log.info(String.format("Thread %s: start %s",t,r));
startTime.set(System.nanoTime());
} @Override
protected void afterExecute(Runnable r, Throwable t) {
try {
long endTime = System.nanoTime();
long taskTime = endTime - startTime.get();
numTasks.incrementAndGet();
totalTime.addAndGet(taskTime);
log.info(String.format("Thread %s: end %s, time=%dns",t,r,taskTime)); } finally {
super.afterExecute(r,t);
}
} @Override
protected void terminated() {
try {
log.info(String.format("Terminated: avg time=%dns",totalTime.get() / numTasks.get()));
} finally {
super.terminated();
}
}
}

  测试执行效果代码如下:

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.Future;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit; /**
* 测试自定义线程池
*/
public class TestCustomThreadPool { public static void main(String[] args) { try {
TimingThreadPool threadPool = new TimingThreadPool(,,0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()); List<TestCallable> tasks = new ArrayList<>(); for (int i = ; i < ; i++) {
tasks.add(new TestCallable());
} List<Future<Long>> futures = threadPool.invokeAll(tasks);
for (Future<Long> future :
futures) {
System.out.print(" - "+future.get());
}
threadPool.shutdown(); } catch (Exception e) {
e.printStackTrace();
} } static class TestCallable implements Callable<java.lang.Long> { @Override
public Long call() throws Exception {
long total = ;
for (int i = ; i < ; i++) {
long now = getRandom();
total += now;
}
Thread.sleep(total);
return total;
} public long getRandom () {
return Math.round(Math.random() * );
}
} }

执行结果:

Java自定义线程池-记录每个线程执行耗时的更多相关文章

  1. Java如何判断线程池所有任务是否执行完毕

    import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class Tes ...

  2. Java 线程池记录

    Java通过Executors提供四种线程池,分别为:newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程.newFixe ...

  3. Java多线程系列--“JUC线程池”03之 线程池原理(二)

    概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...

  4. Java多线程系列--“JUC线程池”04之 线程池原理(三)

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509960.html 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基 ...

  5. Java线程池二:线程池原理

    最近精读Netty源码,读到NioEventLoop部分的时候,发现对Java线程&线程池有些概念还有困惑, 所以深入总结一下 Java线程池一:线程基础 为什么需要使用线程池 Java线程映 ...

  6. Java多线程系列--“JUC线程池”01之 线程池架构

    概要 前面分别介绍了"Java多线程基础"."JUC原子类"和"JUC锁".本章介绍JUC的最后一部分的内容——线程池.内容包括:线程池架构 ...

  7. Java多线程系列--“JUC线程池”02之 线程池原理(一)

    概要 在上一章"Java多线程系列--“JUC线程池”01之 线程池架构"中,我们了解了线程池的架构.线程池的实现类是ThreadPoolExecutor类.本章,我们通过分析Th ...

  8. Java多线程系列--“JUC线程池”05之 线程池原理(四)

    概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...

  9. 深入浅出 Java Concurrency (34): 线程池 part 7 线程池的实现及原理 (2)[转]

    线程池任务执行流程 我们从一个API开始接触Executor是如何处理任务队列的. java.util.concurrent.Executor.execute(Runnable) Executes t ...

随机推荐

  1. Maven之profile实现多环境配置动态切换

            一般的软件项目,在开发.测试及生产等环境下配置文件中参数是不同的.传统的做法是在项目部署的时候,手动修改或者替换这个配置文件.这样太麻烦了,我们可以用Maven的profile来解决这 ...

  2. 【原创】研发应该懂的binlog知识(下)

    引言 这篇是<研发应该懂的binlog知识(上)>的下半部分.在本文,我会阐述一下binlog的结构,以及如何使用java来解析binlog. 不过,话说回来,其实严格意义上来说,研发应该 ...

  3. MFC 坦克定位

    最近学习MFC,写了个用键盘上下左右移动的坦克界面,效果图: 先用VC++新建一个最简单的MFC项目,基于Dialog的 1. 添加坦克图片资源:略 2. 添加3个变量:x, y, m_bitmap ...

  4. 深入浅出:5G和HTTP

    本文将会讲到5G和HTTP.曾经在深入浅出经典面试题:从浏览器中输入URL到页面加载发生了什么 - Part 3 提到为什么有些RPC框架不选用HTTP,而5G会采用HTTP. 您可以从本文里获取到一 ...

  5. [程序员的业余生活]一周读完《高效能人士的七个习惯》Day1:这是不是一碗鸡汤?

    提出问题 今天突然想聊聊最近对职场的一些感悟. 这段时间,小端一直在思考一个问题:作为一个程序员,怎么才能成为团队的核心? 还记得刚入职场那几年,小端一直觉得,技术过硬,经验丰富,敢打敢拼,就是答案. ...

  6. Python全栈开发之路 【第十七篇】:jQuery的位置属性、事件及案例

    位置属性 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <titl ...

  7. Leetcode -- 394. Decode String

    Given an encoded string, return it's decoded string. The encoding rule is: k[encoded_string], where ...

  8. 1003: [ZJOI2006]物流运输 = DP+SBFA

    题意就是告诉你有n个点,e条边,m天,每天都会从起点到终点走一次最短路,但是有些点在某些时间段是不可走的,因此在某些天需要改变路径,每次改变路径的成本是K,总成本=n天运输路线长度之和+K*改变运输路 ...

  9. hdu6249 区间动态规划

    题目链接 题意:给出一些区间,求选k个区间能覆盖的最多点的数量 思路:定义dp[i][j]为前i个点取j个区间的最大值.dp[i][j]可以转移到dp[i+1][j+1]和以i+1为起点的区间终点 具 ...

  10. springboot在yml中配置控制台sql打印方法小结

    方法一: logging: level: debug level.io.renren: debug path: logs/ file: admin.log   方法二 logging:    leve ...