【POJ1704】Georgia and Bob(博弈论)

题面

POJ

Vjudge

题解

这种一列格子中移动棋子的问题一般可以看做成一个阶梯博弈。

将一个棋子向左移动时,它和前面棋子的距离变小,和后面棋子的距离变大,并且减小的值和增大的值是相等的,因此,这个过程我们就可以等价成一个阶梯博弈了。

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int a[1010];
int main()
{
int T;cin>>T;
while(T--)
{
int n,s=0;cin>>n;
for(int i=1;i<=n;++i)cin>>a[i];
sort(&a[1],&a[n+1]);
for(int i=1;i<=n;i+=2)s^=a[n-i+1]-a[n-i]-1;
puts(!s?"Bob will win":"Georgia will win");
}
return 0;
}

【POJ1704】Georgia and Bob(博弈论)的更多相关文章

  1. [POJ1704]Georgia and Bob 博弈论

    从这开始我们来进入做题环节!作为一个较为抽象的知识点,博弈论一定要结合题目才更显魅力.今天,我主要介绍一些经典的题目,重点是去理解模型的转化,sg函数的推理和证明.话不多说,现在开始! Georgia ...

  2. POJ1704 Georgia and Bob 博弈论 尼姆博弈 阶梯博弈

    http://poj.org/problem?id=1704 我并不知道阶梯博弈是什么玩意儿,但是这道题的所有题解博客都写了这个标签,所以我也写了,百度了一下,大概是一种和这道题类似的能转换为尼姆博弈 ...

  3. [poj1704]Georgia and Bob_博弈论

    Georgia and Bob poj-1704 题目大意:题目链接 注释:略. 想法:我们从最后一个球开始,每两个凑成一对.如果有奇数个球,那就让第一个球和开始位置作为一对. 那么如果对手移动的是一 ...

  4. POJ1704 Georgia and Bob

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9771   Accepted: 3220 Description Georg ...

  5. POJ1704 Georgia and Bob (阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %I64d & %I64u Subm ...

  6. POJ1704 Georgia and Bob(Nim博弈变形)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14312   Accepted: 4840 ...

  7. POJ1704 Georgia and Bob Nim游戏

    POJ1704 这道题可以转化为经典的Nim游戏来解决. Nim游戏是这样的 有n堆石子,每堆各有ai个. 两个人轮流在任意石子堆中取至少1个石子,不能再取的输. 解决方法如下, 对N堆石子求异或 为 ...

  8. POJ.1704.Georgia and Bob(博弈论 Nim)

    题目链接 \(Description\) 一个1~INF的坐标轴上有n个棋子,给定坐标Pi.棋子只能向左走,不能跨越棋子,且不能越界(<1).两人每次可以将任意一个可移动的棋子向左移动一个单位. ...

  9. POJ1704 Georgia and Bob 题解

    阶梯博弈的变形.不知道的话还是一道挺神的题. 将所有的棋子两两绑在一起,对于奇数个棋子的情况,将其与起点看作一组.于是便可以将一组棋子的中间格子数看作一推石子.对靠右棋子的操作是取石子,而对左棋子的操 ...

随机推荐

  1. DWZ富客户端框架(jQuery RIA framework)

    该OA项目前端采用的是DWZ框架来进行实现的. 本来想写点总结的,但发现真没啥好写的.中文的文档,到时候用到直接看文档就好.

  2. React Native之TextInput的介绍与使用(富文本封装与使用实例,常用输入框封装与使用实例)

    React Native之TextInput的介绍与使用(富文本封装与使用实例,常用输入框封装与使用实例) TextInput组件介绍 TextInput是一个允许用户在应用中通过键盘输入文本的基本组 ...

  3. oracle创建表空间、创建用户、授权角色和导入导出用户数据

    使用数据库管理员身份登录 -- log as sysdba sqlplus / as sysdba; 创建临时表空间 -- create temporary tablespace create tem ...

  4. opencv自带fast_math.hpp

    cvRound cvFloor cvCeil cvIsNaN cvIsInf

  5. C# Note18: 使用wpf制作about dialog(关于对话框)

    前言 基本上任何software或application都会在help菜单中,有着一个关于对话框,介绍产品的版权.版本等信息,还有就是对第三方的引用(add author credits). 首先,看 ...

  6. 剑指offer(14)

    题目: 操作给定的二叉树,将其变换为源二叉树的镜像. 思路: 这里有个细节,我们发现,6节点的子节点在操作之后并没有发生变化,所以等会我们在交换的时候,交换的不是节点的数值,而是整个节点. 另外我们进 ...

  7. 初识Anrdiod SDK

    概念 SDK:(software development kit)软件开发工具包.被软件开发工程师用于为特定的软件包.软件框架.硬件平台.操作系统等建立应用软件的开发工具的集合. 因此,Android ...

  8. 三、kubernetes环境搭建(实践)

    一.目前近况 docker 版本 K8S支持 18.06的 二.安装docker #1.配置仓库 sudo yum install -y yum-utils device-mapper-persist ...

  9. 使用proxychains 代理终端

    最近在国外的vps上搭建了一个ss服务器,在浏览器里面设置socks5代理上网很方便, 但是终端里面却只支持http方式的代理配置,网上有socks转http代理的方式,但是最近发现一个更为简单的方式 ...

  10. react 入坑笔记(二) - State

    React State 一. state 大致思想:在 react 中,每个组件都是一个状态机,通过与用户的交互,实现不同状态,然后渲染 UI,让用户界面和数据保持一致.React 里,只需更新组件的 ...