gcd和exgcd和lcm
Gcd
▪ 欧几里得算法又称辗转相除法,用于计算两个正整数 a, b 的最大公约数。
▪ 计算公式为 gcd(a,b) = gcd(b,a mod b)。
▪ 公式无需证明,记忆即可。
▪ 如果要求多个数的最大公约数。易证,每次取出两个数再放回去,不会影响答案正
确性。
▪ 比如 a,b,c 三个数,答案就是 gcd(gcd(a,b),c)
int gcd(int a, int b)
{
if (!b) return a;
return gcd(b, a % b);
}
扩展 Gcd
▪ 求出 ax + by = gcd(a,b)的一组可行解。

void exgcd(int a,int b,int& d,int& x,int& y)
{
if(!b)
{
d=a;
x=;
y=;
}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
LCM 最小公倍数
▪ lcm(m,n) = (m * n) / gcd(m,n)
▪ 我们使用刚刚的欧几里得算法求出 gcd 后,即可求得 lcm。
▪ 如果要求解多个数的最小公倍数,则做法与 gcd 类似。
▪ 比如有 a,b,c 三个数,答案就是 lcm(lcm(a,b),c)
gcd和exgcd和lcm的更多相关文章
- gcd以及exgcd入门讲解
gcd就是最大公约数,gcd(x, y)一般用(x, y)表示.与此相对的是lcm,最小公倍数,lcm(x, y)一般用[x, y]表示. 人人都知道:lcm(x, y) = x * y / gcd( ...
- Algorithm: GCD、EXGCD、Inverse Element
数论基础 数论是纯数学的一个研究分支,主要研究整数的性质.初等数论包括整除理论.同余理论.连分数理论.这一篇主要记录的是同余相关的基础知识. 取模 取模是一种运算,本质就是带余除法,运算结果就是余数. ...
- Summary: gcd最大公约数、lcm最小公倍数算法
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数.其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + ...
- 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS
LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...
- 求gcd(最大公因数),lcm(最小公倍数)模板
gcd(最大公因数),lcm(最小公倍数) #include<iostream> using namespace std; int gcd(int a,int b)//辗转相除法(欧几里德 ...
- gcd与exgcd
gcd 辗转相除法求gcd证明 \(gcd(a, b) == gcd(b, a\%b)\) 证明: 设: \(d\)为\(a\)与\(b\)的一个公约数, 则有\(d|b\) \(d|a\) 设: \ ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- gcd,最大公约数,lcm,最小公倍数
int gcd(int a,int b){ ?a:gcd(b,a%b); } 关于lcm,若写成a*b/gcd(a,b) ,a*b可能会溢出! int lcm(int a,int b){ return ...
- 关于gcd和exgcd的一点心得,保证看不懂(滑稽)
网上看了半天……还是没把欧几里得算法和扩展欧几里得算法给弄明白…… 然后想了想自己写一篇文章好了…… 参考文献:https://www.cnblogs.com/hadilo/p/5914302.htm ...
随机推荐
- 2018-08-06 在Office的VBA代码里中文命名
在Excel处理数据时, 顺便试了一下VBA代码编辑器里输入中文, 结果显示为乱码. 查了一下发现VBA本身支持Unicode, 但需要设置系统配置使编辑器能够正常显示, 即设置简体中文为Curren ...
- Windows下git设置代理服务器
SVN中,使用TortoiseSVN来进行版本控制时,设置代理非常简单,只需要在设置里面添加代理的信息即可.而 git 在GUI(v0.17.GITGUI)中却无法找到类似的设置,只能求助 git b ...
- 【20190226】CSS-知识点记录::nth-child,:nth-of-type
:nth-child: ele:nth-child(k):选择父元素下第k个子元素,且该子元素为ele,若不是,则选择失败,k从1开始计数 ele:nth-child(-n+5):选中前五个子元素,n ...
- css小知识
7. span { display:inline-block; width:70px; /* 超出长度以...显示 */ text-overflow: ellipsis; white-space: n ...
- 你不可不知的Java引用类型【总结篇】
四种引用类型总结 引用级别:强引用 > 软引用 > 弱引用 > 虚引用 理解 就如最开始说的,设置四种引用类型,是为了更好的控制对象的生命周期,让代码能够一定程度上干涉GC过程,所以 ...
- canvas代替imgage,可以有效的提高大图片加载的速度!
//加载zepto插件 <script> //定义图片的数量 var total = 17; //获取屏幕的宽度 var zWin = $(window); //定义渲染图片的方法 var ...
- html:常见行内标签,常见块级标签,常见自闭合标签
本文内容: 常见行内标签 常见块级标签 常见自闭合标签 首发日期:2018-02-12 修改: 2018-04-25:删除了不常用的标签 常见行内标签: 什么是行内标签: 行内标签就是在页面内只占据刚 ...
- JAVA项目从运维部署到项目开发(二.ZooKeeper)
一.zookeeper的相关介绍 点击查看 二.下载.安装与配置 1.ZooKeeper官网下载地址(点击跳转),当前稳定版本为V3.4.12.Liniux下可以在指定目录,使用wget命令下载. h ...
- mssql sqlserver两条求和sql脚本相加的方法分享
转自:http://www.maomao365.com/?p=7205 摘要: 下文分享两条sql求和脚本,再次求和的方法分享 /* 例: 下文已知两条sql求和脚本,现需对两张不同表的求和记录再次求 ...
- C#判断文件编码——常用字法
使用中文写文章,当篇幅超过一定程度,必然会使用到诸如:“的”.“你”.“我”这样的常用字.本类思想便是提取中文最常用的一百个字,使用中文世界常用编码(主要有GBK.GB2312.GB18030.UTF ...