gcd和exgcd和lcm
Gcd
▪ 欧几里得算法又称辗转相除法,用于计算两个正整数 a, b 的最大公约数。
▪ 计算公式为 gcd(a,b) = gcd(b,a mod b)。
▪ 公式无需证明,记忆即可。
▪ 如果要求多个数的最大公约数。易证,每次取出两个数再放回去,不会影响答案正
确性。
▪ 比如 a,b,c 三个数,答案就是 gcd(gcd(a,b),c)
int gcd(int a, int b)
{
if (!b) return a;
return gcd(b, a % b);
}
扩展 Gcd
▪ 求出 ax + by = gcd(a,b)的一组可行解。
void exgcd(int a,int b,int& d,int& x,int& y)
{
if(!b)
{
d=a;
x=;
y=;
}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
LCM 最小公倍数
▪ lcm(m,n) = (m * n) / gcd(m,n)
▪ 我们使用刚刚的欧几里得算法求出 gcd 后,即可求得 lcm。
▪ 如果要求解多个数的最小公倍数,则做法与 gcd 类似。
▪ 比如有 a,b,c 三个数,答案就是 lcm(lcm(a,b),c)
gcd和exgcd和lcm的更多相关文章
- gcd以及exgcd入门讲解
gcd就是最大公约数,gcd(x, y)一般用(x, y)表示.与此相对的是lcm,最小公倍数,lcm(x, y)一般用[x, y]表示. 人人都知道:lcm(x, y) = x * y / gcd( ...
- Algorithm: GCD、EXGCD、Inverse Element
数论基础 数论是纯数学的一个研究分支,主要研究整数的性质.初等数论包括整除理论.同余理论.连分数理论.这一篇主要记录的是同余相关的基础知识. 取模 取模是一种运算,本质就是带余除法,运算结果就是余数. ...
- Summary: gcd最大公约数、lcm最小公倍数算法
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数.其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + ...
- 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS
LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...
- 求gcd(最大公因数),lcm(最小公倍数)模板
gcd(最大公因数),lcm(最小公倍数) #include<iostream> using namespace std; int gcd(int a,int b)//辗转相除法(欧几里德 ...
- gcd与exgcd
gcd 辗转相除法求gcd证明 \(gcd(a, b) == gcd(b, a\%b)\) 证明: 设: \(d\)为\(a\)与\(b\)的一个公约数, 则有\(d|b\) \(d|a\) 设: \ ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- gcd,最大公约数,lcm,最小公倍数
int gcd(int a,int b){ ?a:gcd(b,a%b); } 关于lcm,若写成a*b/gcd(a,b) ,a*b可能会溢出! int lcm(int a,int b){ return ...
- 关于gcd和exgcd的一点心得,保证看不懂(滑稽)
网上看了半天……还是没把欧几里得算法和扩展欧几里得算法给弄明白…… 然后想了想自己写一篇文章好了…… 参考文献:https://www.cnblogs.com/hadilo/p/5914302.htm ...
随机推荐
- Oracle11g: simple sql script examples
---https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_8003.htm drop user geovin; drop ...
- loj#6031. 「雅礼集训 2017 Day1」字符串(SAM 广义SAM 数据分治)
题意 链接 Sol \(10^5\)次询问每次询问\(10^5\)个区间..这种题第一感觉就是根号/数据分治的模型. \(K\)是个定值这个很关键. 考虑\(K\)比较小的情况,可以直接暴力建SAM, ...
- Ubuntu、deepin 安装 mysql
在 Ubuntu 和 deepin 安装 mysql 是很简单的,只需要几条简单的命令即可 1. sudo apt-get install mysql-server 2. sudo apt-get ...
- SQL注入与防范
首先给大家看个例子: 1)小编首先在数据库中建立了一张测试表logintable,表内有一条测试信息: 然后写了个测试程序: package com.java.SqlInject; import ja ...
- python线程同步原语--源码阅读
前面两篇文章,写了python线程同步原语的基本应用.下面这篇文章主要是通过阅读源码来了解这几个类的内部原理和是怎么协同一起工作来实现python多线程的. 相关文章链接:python同步原语--线程 ...
- 现有项目中集成Flutter
本文列举了项目开发使用Flutter会遇到的问题,以及如何使用Flutter module在现有项目中集成Flutter,并对其原理进行了分析. 最近在做的一个商业项目,完全的使用Flutter编写的 ...
- 你不可不知的Java引用类型之——虚引用
定义 虚引用是使用PhantomReference创建的引用,虚引用也称为幽灵引用或者幻影引用,是所有引用类型中最弱的一个.一个对象是否有虚引用的存在,完全不会对其生命周期构成影响,也无法通过虚引用获 ...
- verilog实现红黄蓝三秒灯
代码如下 test.v文件 led.v文件 module test(); wire led_r,led_g,led_b; ; clk <= ~clk; led c1 ( .clk(clk), . ...
- 我的第一个远程代码库房:建立Github仓库 心得
一直想有一个自己的代码库,搞了两天终于搞定了,把自己的代码上传到github的愿望终于实现了,虽然仅仅是个开始. 在搭建的过程中,吸收了些知识,记录在这里,以作为分享. Git 和 Github 的区 ...
- Team Services的打包管理
Team Services的打包管理 概述 Package Management (打包管理)是一种扩展,可以更容易地发现.安装和发布包. 它与Team Services中心如构建功能深度集成,这样打 ...