BZOJ2783: [JLOI2012]树(树上前缀和+set)
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 1215 Solved: 768
[Submit][Status][Discuss]
Description
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
输出格式:
输出路径节点总和为S的路径数量。
|
输入样例: |
输出样例: |
|
3 3 1 2 3 1 2 1 3 |
2 |
数据范围:
对于30%数据,N≤100;
对于60%数据,N≤1000;
对于100%数据,N≤100000,所有权值以及S都不超过1000。
这个是JLOI2012的T1,发出来仅为了试题完整
=============================================================================================
在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。
Input
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
Output
输出路径节点总和为S的路径数量。
Sample Input
1 2 3
1 2
1 3
Sample Output
HINT
对于100%数据,N≤100000,所有权值以及S都不超过1000。
Source
刚开始以为是点分治,但是这道题目明确说明所有的路径都是一条链
然后来一遍树上前缀和就行了!
注意不要忘了删除
#include<cstdio>
#include<set>
#include<algorithm>
#include<cstring>
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
using namespace std;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,S;
int val[MAXN],sum[MAXN],ans=;
set<int>s;
struct node
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
int dfs(int now)
{
s.insert(sum[now]);
if(s.find(sum[now]-S)!=s.end()) ans++;
for(int i=head[now];i!=-;i=edge[i].nxt)
{
sum[edge[i].v]=sum[now]+val[edge[i].v];
dfs(edge[i].v);
}
s.erase(s.find(sum[now]));
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
N=read(),S=read();
memset(head,-,sizeof(head));
for(int i=;i<=N;i++) val[i]=read();
for(int i=;i<=N-;i++)
{
int x=read(),y=read();
AddEdge(x,y);
}
sum[]=val[];
//s.insert(0);
dfs();
printf("%d",ans);
return ;
}
BZOJ2783: [JLOI2012]树(树上前缀和+set)的更多相关文章
- [BZOJ2783/JLOI2012]树 树上倍增
Problem 树 题目大意 给出一棵树,求这个树上的路径的数量,要求路径上的点权和等于s且路径的上每个点深度不同. Solution 这个题目可以用不少方法做. 首先,路径上每个节点的深度不同决定了 ...
- [bzoj2783][JLOI2012]树_树的遍历
树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 1 ...
- BZOJ2783: [JLOI2012]树 dfs+set
2783: [JLOI2012]树 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 588 Solved: 347 Description 数列 提交文 ...
- 【bzoj2783】[JLOI2012]树 树上倍增
题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一 ...
- BZOJ2783: [JLOI2012]树
Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这 ...
- 【dfs】【哈希表】bzoj2783 [JLOI2012]树
因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u] ...
- 【BZOJ2783】[JLOI2012]树 DFS+栈+队列
[BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...
- 洛谷 P3252 [JLOI2012]树
P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...
- BZOJ2588 主席树 + 树上差分
https://www.lydsy.com/JudgeOnline/problem.php?id=2588 题意:强制在线的询问树链权值第K小(无修) 这种类似于第K小的题,一般容易想到主席树,但是树 ...
随机推荐
- 第一节:ASP.NET开发环境配置
第一节:ASP.NET开发环境配置 什么是ASP.NET,学这个可以做什么,学习这些有什么内容? ASP.NET是微软公司推出的WEB开发技术. 2002年,推出第一个版本,先后推出ASP.NET2. ...
- lvs、nginx、HAProxy、keepalive工作原理
1. lvs.nginx.HAProxy.keepalive工作原理 1.1. 前言 遇到了负载均衡和高可用选型问题,我觉的有必要好好理解下lvs,nginx,haproxy和keepalive的区别 ...
- Silverlight多重表头实现
效果: 实现主要逻辑:通过动态拼接XML生成表头样式,绑定到列上. 主要是动态拼接XML时要仔细核对对应的占位行,具体可以看代码,注释很详细 两个类一个接口 NTree<T>:定义表头树形 ...
- 关于在vscode中以https方式请求!不是以file文件夹访问!vscode中 ajax请求
在vscode 头疼的问题是 用浏览器查看网页!会是以文件夹的方式打开的! 我遇到这个问题 我还重新配置了Apache ! 但是现在可以解决: 使用vscode ============== ...
- Mac-Navicat Premium For Mac 12 破解 - [数据库可视化工具,亲测完美破解]
一.下面的公钥和私钥暂时存到文本编辑器中 公钥: -----BEGIN PUBLIC KEY-----MIIBITANBgkqhkiG9w0BAQEFAAOCAQ4AMIIBCQKCAQB8vXG0I ...
- python高级-包(15)
一.引入包 1.1 有2个模块功能有些联系 receiveMsg.py和sendMsg.py都在msg文件夹里面. 1.2.使用import 文件.模块的方式导入 在桌面创建demo.py文件,并把r ...
- DWR第六篇之文件下载
1. 在第五篇架构基础上进行修改 2. 修改jsp页面 <html> <head> <base href="<%=basePath%>"& ...
- Long类型时间如何转换成视频时长?
数据库中存放的视频时长是一个Long类型的毫秒/秒时间,现在需要把这个时间转换成标准的视频时长格式,在我看来这应该是一个很常用的转化有一个很常用的转换方法工具才对,可是我百度找了许久,没有一个简单直观 ...
- PHP中的__set和__get方法
当调用或者设置类不存在的方法时,_会调用_set和__get方法 以下是示例 <?php class HandsonBoy { private $name = 'chenqionghe'; pr ...
- Tomcat8源码笔记(九)组件StandardContext启动流程--未完待续
StandardContext代表的是webapps下项目,一个项目就是一个StandardContext,作为Tomcat组件的一部分,就会实现Lifecycle接口,被Tomcat管理着生命周期, ...