BZOJ2783: [JLOI2012]树(树上前缀和+set)
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 1215 Solved: 768
[Submit][Status][Discuss]
Description
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
输出格式:
输出路径节点总和为S的路径数量。
|
输入样例: |
输出样例: |
|
3 3 1 2 3 1 2 1 3 |
2 |
数据范围:
对于30%数据,N≤100;
对于60%数据,N≤1000;
对于100%数据,N≤100000,所有权值以及S都不超过1000。
这个是JLOI2012的T1,发出来仅为了试题完整
=============================================================================================
在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。
Input
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
Output
输出路径节点总和为S的路径数量。
Sample Input
1 2 3
1 2
1 3
Sample Output
HINT
对于100%数据,N≤100000,所有权值以及S都不超过1000。
Source
刚开始以为是点分治,但是这道题目明确说明所有的路径都是一条链
然后来一遍树上前缀和就行了!
注意不要忘了删除
#include<cstdio>
#include<set>
#include<algorithm>
#include<cstring>
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
using namespace std;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,S;
int val[MAXN],sum[MAXN],ans=;
set<int>s;
struct node
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
int dfs(int now)
{
s.insert(sum[now]);
if(s.find(sum[now]-S)!=s.end()) ans++;
for(int i=head[now];i!=-;i=edge[i].nxt)
{
sum[edge[i].v]=sum[now]+val[edge[i].v];
dfs(edge[i].v);
}
s.erase(s.find(sum[now]));
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
N=read(),S=read();
memset(head,-,sizeof(head));
for(int i=;i<=N;i++) val[i]=read();
for(int i=;i<=N-;i++)
{
int x=read(),y=read();
AddEdge(x,y);
}
sum[]=val[];
//s.insert(0);
dfs();
printf("%d",ans);
return ;
}
BZOJ2783: [JLOI2012]树(树上前缀和+set)的更多相关文章
- [BZOJ2783/JLOI2012]树 树上倍增
Problem 树 题目大意 给出一棵树,求这个树上的路径的数量,要求路径上的点权和等于s且路径的上每个点深度不同. Solution 这个题目可以用不少方法做. 首先,路径上每个节点的深度不同决定了 ...
- [bzoj2783][JLOI2012]树_树的遍历
树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 1 ...
- BZOJ2783: [JLOI2012]树 dfs+set
2783: [JLOI2012]树 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 588 Solved: 347 Description 数列 提交文 ...
- 【bzoj2783】[JLOI2012]树 树上倍增
题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一 ...
- BZOJ2783: [JLOI2012]树
Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这 ...
- 【dfs】【哈希表】bzoj2783 [JLOI2012]树
因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u] ...
- 【BZOJ2783】[JLOI2012]树 DFS+栈+队列
[BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...
- 洛谷 P3252 [JLOI2012]树
P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...
- BZOJ2588 主席树 + 树上差分
https://www.lydsy.com/JudgeOnline/problem.php?id=2588 题意:强制在线的询问树链权值第K小(无修) 这种类似于第K小的题,一般容易想到主席树,但是树 ...
随机推荐
- python常用库函数 - 备忘
基础库 1. 正则表达式:re 符号 ()小括号 -- 分组 []中括号 -- 字符类,匹配所包含的任一字符 #注:字符集合把[]里面的内容当作普通字符!(-\^除外) {}大括号 -- 限定匹配次数 ...
- mysql 开发进阶篇系列 14 锁问题(避免死锁,死锁查看分析)
一. 概述 通常来说,死锁都是应用设计问题,通过调整业务流程,数据库对象设计,事务大小,以及访问数据库的sql语句,绝大部分死锁都可以避免,下面介绍几种避免死锁的常用 方法. 1. 在应用中,如果不同 ...
- java字符流操作flush()方法及其注意事项
java字符流操作flush()方法及其注意事项 flush()方法介绍 查阅文档可以发现,IO流中每一个类都实现了Closeable接口,它们进行资源操作之后都需要执行close()方法将流关闭 ...
- github提交代码contributions不显示小绿块
问题描述: 最近发现一个问题就是不管是提交新增的代码还是修改后提交的代码在github的contributions上都不显示贡献小绿块. 于是我在 github help 里面找到了答案: 官方链接如 ...
- leetcode — climbing-stairs
/** * * Source : https://oj.leetcode.com/problems/climbing-stairs/ * * * You are climbing a stair ca ...
- MongoDB 菜鸟入门“秘籍”
1.MongoDB介绍 1.1 什么是MongoDB ? MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性能. Mo ...
- 【ASP.NET MVC系列】浅谈ASP.NET MVC 控制器
ASP.NET MVC系列文章 [01]浅谈Google Chrome浏览器(理论篇) [02]浅谈Google Chrome浏览器(操作篇)(上) [03]浅谈Google Chrome浏览器(操作 ...
- Go基础系列:Go slice详解
slice表示切片(分片),例如对一个数组进行切片,取出数组中的一部分值.在现代编程语言中,slice(切片)几乎成为一种必备特性,它可以从一个数组(列表)中取出任意长度的子数组(列表),为操作数据结 ...
- μC/OS-II 创建一个任务的流程
1. 声明任务的优先级.任务堆栈的大小及任务函数 #define LED_TASK_PRIO 6 #define LED_STK_SIZE 64 void led_task(void *pdata); ...
- ElasticSearch集群环境搭建
一 .单机部署 1.下载安装包.解压 2.在window下运行bin/elasticsearch.bat 3.访问localhost:9200 页面显示结果 { "name" : ...