NOI2010能量采集(数学)
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。
栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。
由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。
能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能 量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。
下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。
题意为求1-n之间的所有数和1-m之间的所有数两两之间的GCD。
一道非常经典的莫比乌斯反演的例题,但有一种容斥的方法更加简单。
考虑枚举每个gcd,那么gcd为当前gcd的倍数的数对就有n/gcd*m/gcd个。
在考虑把多余的方案去掉,只要枚举gcd的所有倍数,把它们都减掉就好了。
做的时候就倒着枚举gcd就可以了。
#include<iostream>
#include<cstdio>
using namespace std;
int gcd(int x,int y){return y?gcd(y,x%y):x;}
int n,m,mi;
long long ans,f[];
int main()
{
cin>>n>>m;mi=min(m,n);
for(int i=mi;i>=;--i)
{
f[i]=(long long)(m/i)*(n/i);
for(int j=(i<<);j<=mi;j+=i)f[i]-=f[j];
ans+=f[i]*(i*-);
}
cout<<ans;
return ;
}
NOI2010能量采集(数学)的更多相关文章
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)
[bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...
- [NOI2010] 能量采集 (数学)
[NOI2010] 能量采集 题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. ...
- [BZOJ2005][NOI2010]能量采集 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 发现与$(0,0)$连线斜率相同的点会被挡住.也就是对于$(a,b)$且$gcd(a ...
- BZOJ 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 3312 Solved: 1971[Submit][Statu ...
- noi2010 能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MB Submit: 3068 Solved: 1820 [Submit][Sta ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
- 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 1831 Solved: 1086[Submit][Statu ...
随机推荐
- 项目管理、软件、禅道 VS JIRA
项目管理软件之争,禅道和JIRA大对比 - 简书https://www.jianshu.com/p/2533c0b7e456 [原创]项目管理软件之争,禅道和JIRA大对比 - zhengqiaoyi ...
- centos 7 aufs
Docker storage drivers | Docker Documentationhttps://docs.docker.com/storage/storagedriver/select-st ...
- asp.net mvc或者其他程序无法打开excel——解决方案,C#处理Excel文件
问题描述:今天处理Excel时遇到一个问题,本地使用Microsoft.Jet.OLEDB.4.0处理,正常完成了需求, 上传到服务器后发生了异常,通过排查发现问题出现在对Excel文件的读取上,然后 ...
- PHP常见错误汇总
日常开发和调试的时候,经常会遇到一些错误,光怪陆离的不知所以,所以,特此将错误汇总一下,借鉴!!! 1. 原因分析: 一般可能是该文件出现了问题,检查一下代码和格式,是否出现开始的地方出现了空格,或 ...
- 配置react-sass
在配置react-sass时遇到很多坑其中 一条如果你的.scss文件失效 请一定要在fileloader之前配置该sass-loader 配置文件如下 基于你不熟悉webpack 容易出这个错误
- spark、standalone集群 (2)集群zookeeper 热备
测试 cmd spark-examples-1.6.0-hadoop2.6.0.jar spark 2.0以后 就没有这个 jar.需要下载 ./bin/spark-submit -- ...
- day 7-6 多线程及开启方式
一. 什么是线程 线程:顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程 所以,进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程 ...
- <转>Python中的新式/经典类的查找方式
在学习到深度和广度的时候,懵了很久.后来看到这篇文章,恍然大悟.写的很好.特意转过来. 经典类: 只要有父类, 就会沿着一直找, 即使已经找过了~ 新式类: 在类继承的多个类拥有共同父类的情况下, 会 ...
- ArrayList的扩容机制
一.ArrayList的扩容机制 1.扩容的计算方式是向右位移,即:newSize = this.size + (this.size>>1).向右位移,只有在当前值为偶数时,才是除以2:奇 ...
- Json dump
json 模块提供了一种很简单的方式来编码和解码JSON数据. 其中两个主要的函数是 json.dumps() 和 json.loads() , 要比其他序列化函数库如pickle的接口少得多. 下面 ...