POJ2533&&SP1799 The Bottom of a Graph(tarjan+缩点)
POJ2553
SP1799
我们知道单独一个强连通分量中的所有点是满足题目要求的
但如果它连出去到了其他点那里,要么成为新的强连通分量,要么失去原有的符合题目要求的性质
所以只需tarjan缩点求出所有强连通分量,再O(E)枚举所有边,是否会成为连接一个分量与另一个分量的边——即一条出度——即可
如果一个分量没有出度,那么他中间的所有点都是符合题目要求的点
(因为快读快输加了太长所以就不贴了)
const int N=5005,M=N*N>>1;
int h[N],en,n,m,dfn[N],out[N],bel[N],low[N],num,cnt;
stack<int> st;
struct edge{int n,u,v;}e[M]; //前向星存边
inline void add(const int &x,const int &y){e[++en]=(edge){h[x],x,y},h[x]=en;}
inline void tarjan(int x){ //一个tarjan缩点STL栈模板
st.push(x);
dfn[x]=low[x]=++num;
for(int i=h[x];i;i=e[i].n){
int y=e[i].v;
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}
else if(!bel[y])
low[x]=min(low[x],dfn[y]);
}
if(low[x]==dfn[x]){
cnt++;
int TOP;
do{
TOP=st.top();
st.pop();
bel[TOP]=cnt;
}while(TOP!=x);
}
}
signed main(){
read(n);
while(n){
en=num=cnt=0;
memset(h,0,sizeof h);
memset(dfn,0,sizeof dfn);
memset(out,0,sizeof out);
memset(bel,0,sizeof bel);
memset(low,0,sizeof low);
read(m);
while(m--){
int x,y;
read(x),read(y);
add(x,y);
}
for(int i=1;i<=n;i++) if(!dfn[i]) //跑缩点
tarjan(i);
for(int i=1,u,v;i<=en;i++){
u=e[i].u,v=e[i].v;
if(bel[u]!=bel[v]) out[bel[u]]++; //判断每条边的起点终点是否在同一强连通分量中,如果不是,则起点所在强连通分量出度加1
}
for(int i=1;i<=n;i++) if(!out[bel[i]]) //如果点i所在强连通分量没有出度则满足要求,输出
Write(i,' ');
printf("\n"); //统一换行
read(n);
}
}
POJ2533&&SP1799 The Bottom of a Graph(tarjan+缩点)的更多相关文章
- POJ 2553 The Bottom of a Graph (Tarjan)
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11981 Accepted: ...
- POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)
Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...
- poj--2553--The Bottom of a Graph (scc+缩点)
The Bottom of a Graph Time Limit : 6000/3000ms (Java/Other) Memory Limit : 131072/65536K (Java/Oth ...
- POJ 2553 The Bottom of a Graph TarJan算法题解
本题分两步: 1 使用Tarjan算法求全部最大子强连通图.而且标志出来 2 然后遍历这些节点看是否有出射的边,没有的顶点所在的子强连通图的全部点,都是解集. Tarjan算法就是模板算法了. 这里使 ...
- [poj 2553]The Bottom of a Graph[Tarjan强连通分量]
题意: 求出度为0的强连通分量. 思路: 缩点 具体有两种实现: 1.遍历所有边, 边的两端点不在同一强连通分量的话, 将出发点所在强连通分量出度+1. #include <cstdio> ...
- The Bottom of a Graph(tarjan + 缩点)
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9139 Accepted: ...
- poj 2553 The Bottom of a Graph(强连通分量+缩点)
题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K ...
- poj 2553 The Bottom of a Graph【强连通分量求汇点个数】
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: ...
- 【图论】The Bottom of a Graph
[POJ2553]The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 11182 ...
随机推荐
- nltk处理文本
nltk(Natural Language Toolkit)是处理文本的利器. 安装 pip install nltk 进入python命令行,键入nltk.download()可以下载nltk需要的 ...
- Windows完成端口与猪肉佬
首先应该说明的是,我也是第一次使用完成端口.虽然以前偶尔在网上看到完成端口的文章和代码,但真正自己动手写还是第一次,不过我这个人有个特点就是大胆,例如没有写那个界面编程系列前,其实我甚至不知道原来一个 ...
- Angucomplete —— AngularJS 自动完成输入框
分享 <关于我> 分享 [中文纪录片]互联网时代 http://pan.baidu.com/s/1qWkJfcS 分享 <HTML开发MacOSAp ...
- VS2008下QT整合OGRE
环境配置如下:VS2008 QT版本:4.8.1 OGRE版本: 1.7.4 请先配置好QT for vs2008 : 下载QT VS2008的包,然后下个QT VS的插件 版本必须是VS2008 ...
- Qt信号量QSemaphore(在线程里使用,结合生产者消费者的问题)
Qt中的信号量是由QSemaphore类提供的,信号量可以理解为对互斥量功能的扩展,互斥量只能锁定一次而信号量可以获取多次,它可以用来保护一定数量的同种资源.acquire()函数用于获取n个资源,当 ...
- Hadoop集群(第3期)机器信息分布表
1.分布式环境搭建 采用4台安装Linux环境的机器来构建一个小规模的分布式集群. 图1 集群的架构 其中有一台机器是Master节点,即名称节点,另外三台是Slaver节点,即数据节点.这四台机器彼 ...
- hadoop之hive高级操作
在输出结果较多,需要输出到文件中时,可以在hive CLI之外执行hive -e "sql" > output.txt操作 但当SQL语句太长或太多时,这种方式不是很方便,可 ...
- 区块狗开发可以做出APP吗
区块狗系统开发林生▉l8l加4896微9698电同步▉,区块狗奖励系统开发,区块狗平台系统开发,区块狗系统开发软件,区块狗系统开发案例,区块狗源码系统开发. 本公司是软件开发公司,华登区块狗/十二生肖 ...
- Babel是什么?
要是官方文档写得好的话,我也许就不用自己做个笔记. 官方文档 Babel 是一个工具链,主要用于将 ECMAScript 2015+ 版本的代码转换为向后兼容的 JavaScript 语法,以便能够运 ...
- PWN菜鸡入门之栈溢出(1)
栈溢出 一.基本概念: 函数调用栈情况见链接 基本准备: bss段可执行检测: gef➤ b main Breakpoint at . gef➤ r Starting program: /mnt/ ...