一道差分约束的模板题。

题目

题意:n个人每个人至少一个糖果,另外要满足k个不等式,求最少糖果数。

差分约束系统

给定一组不等式 $ x[i]-x[j]<=c[k] $ (或 $ x[i]-x[j]>=c[k] $ ),需要求出满足所有不等式的一组解 $ (x[1],x[2],…,x[n]) $ 。这类问题是线性规划的一类简单问题。

形式:通常表示为 $ AX<=C(或AX>=C) $ ,其中系数矩阵 $ A $ 的每一行里有一个 $ 1 $ 和一个 $ -1 $ ,其余元素都为 $ 0 $。若 $ A $ 为 $ m* n $的矩阵,则 $ X $ 为 $ n* 1 $ 的矩阵,$ C $ 为 $ m* 1 $ 的矩阵,对应有 $ m $ 个不等式,$ n $ 个未知数,即该系统为一个有 $ n $ 个未知数、$ m $ 个约束条件的系统,这就是差分约束系统。

求解差分约束系统,可以转化成图论的单源最短路径问题

$ x[j]-x[i]<=b[k] $ ,类似最短路中的三角不等式 $ d[j] <= d[i] + w[i,j] $ ,即 $ d[j] - d[i] <= w[i,j] $

以每个变量 $ x[i] $ 为结点,对于约束条件 $ x[j]-x[i]<=b[k] $ ,连接一条边 $ E(i,j) $ ,边权为 $ b[k] $

增加一个源点S与所有其他点相连,边权均为 $ 0 $ , $ x[i]-x[0]<=0 $

则引例中的不等式可以转化为如下有向图:

     x1-x2<=0
x1-x5<=-1
x2-x5<=1
x3-x1<=5
x4-x1<=-1
x4-x3<=-1
x5-x3<=-3
x5-x4<=-3

最短路和最长路的区分

若求最大的解,那么初始时把 $ d[] $ 设为无穷大,用最短路求解。即 $ if(d[v]>d[u]+w(u,v)) $ 进行更新,而建图的时候也要用小于等于。

若求最小的解,那么初始时把 $ d[] $ 设为无穷小,用最长路求解。即 if $ (d[v]<d[u]+w(u,v)) $ 进行更新,而建图的时候也要用大于等于。

以求解最大的为例(最小解同理)$ d[s] $ 一开始为无穷大,图最短路更新的条件为: $ if(d[v]>d[u]+w(u,v))d[v]=d[u]+w(u,v) $ ; 通过不断的松弛,使得d的值不断变小,直到满足所有条件,也就是说满足条件的时候就是最大的了。

那么这题我们可以分情况讨论

1.当 $ x=1 $ 建边 $ w[i,j]=0 \ w[j,i]=0 $

2.当 $ x=2 $ 建边 $ w[i,j]=1( $ 如果 $ i=j $ 输出 $ -1 $

3.当 $ x=3 $ 建边 $ w[j,i]=0 $ 可以取等就取等

4.当 $ x=4 $ 建边 $ w[j,i]=1( $ 如果 $ i=j $ 输出 $ -1 $

5.当 $ x=5 $ 建边 $ w[i,j]=0 $ 可以取等就取等

最后从 $ 0 $ 号节点向各个节点连一条长度为 $ 1 $ 的边(至少一个糖果,跑spfa最长路即可。

对于环特判,spfa一个点进入队列的次数大于等于n次,则说明存在环

最后统计每个点的糖果数即可

注意

$ ans $ 开 $ long \ long $ 十年 $ OI $ 一场空,不开$ long \ long $见祖宗

从 $ 0 $ 号节点建图倒过来枚举(出题人卡 $ spfa $ 丧心病狂, $ spfa $ 的效率与建图有关所以反过来就起飞

代码

#include<bits/stdc++.h>
using namespace std;
const int size=200010;
int tot,head[size],ver[size*2],Next[2*size],edge[2*size];
int v[size],d[size],to[size],n,k;
bool flag=1;
long long ans;
queue<int>q;
void add(int x,int y,int z){
ver[++tot]=y;edge[tot]=z;Next[tot]=head[x];head[x]=tot;
}
void spfa(){
memset(d,0,sizeof(d));
memset(v,0,sizeof(v));
v[0]=1;d[0]=0;
q.push(0);
while(q.size()){
int x=q.front();
q.pop();v[x]=0;
if(to[x]==n-1){
printf("-1");
exit(0);
}to[x]++;
for(int i=head[x];i;i=Next[i]){
int y=ver[i],z=edge[i];
if(d[y]<d[x]+z){
d[y]=d[x]+z;
if(!v[y]) q.push(y),v[y]=1;
}
}
}
}
int main(){
scanf("%d %d",&n,&k);
while(k--){
int x,a,b;
scanf("%d %d %d",&x,&a,&b);
if(x==1){
add(a,b,0);add(b,a,0);
}else if(x==2){
if(a==b) flag=0;
add(a,b,1);
}else if(x==3){
add(b,a,0);
}else if(x==4){
if(a==b) flag=0;
add(b,a,1);
}else{
add(a,b,0);
}
if(!flag){
printf("-1");
return 0;
}
}
for(int i=n;i;--i) add(0,i,1);
spfa();
for(int i=1;i<=n;++i) ans+=d[i];
printf("%lld",ans);
return 0;
}

P3275 [SCOI2011]糖果 题解的更多相关文章

  1. 洛谷P3275 [SCOI2011]糖果 题解

    题目链接: https://www.luogu.org/problemnew/show/P3275 分析: 本题就是一个裸的差分约束. 核心: x=1x=1x=1时,a=b,a−>b,b−> ...

  2. [luogu P3275] [SCOI2011]糖果

    [luogu P3275] [SCOI2011]糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些 ...

  3. P3275 [SCOI2011]糖果 && 差分约束(二)

    学习完了差分约束是否有解, 现在我们学习求解最大解和最小解 首先我们回想一下是否有解的求解过程, 不难发现最后跑出来任意两点的最短路关系即为这两元素的最短路关系. 即: 最后的最短路蕴含了所有元素之间 ...

  4. 洛谷——P3275 [SCOI2011]糖果

    P3275 [SCOI2011]糖果 差分约束模板题,基本思路就是$d[v]+w[v,u]<=d[u]$,$Spfa$更新方法, 有点套路的是要建立原点,即图中不存在的点来向每个点加边,但同样这 ...

  5. 差分约束详解&&洛谷SCOI2011糖果题解

    差分约束系统: 如果一个系统由n个变量和m个约束条件组成,形成m个形如ai-aj≤k的不等式(i,j∈[1,n],k为常数),则称其为差分约束系统(system of difference const ...

  6. 题解——洛谷P3275 [SCOI2011]糖果

    一道条件非常多的差分约束 把\( a < b \)转化为\( a-b \le -1\)就可做了 \( a>b \)的情况同理 若有负环则无解输出-1 注意本题中要求每个人都有糖果 所以假设 ...

  7. 【luogu P3275 [SCOI2011]糖果】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3275 把不等式 A > B 转化成 A - B >= 1或者 B - A <= -1再差分 ...

  8. 洛谷P3275 [SCOI2011]糖果 [差分约束系统]

    题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...

  9. 【POJ 3159】Candies&&洛谷P3275 [SCOI2011]糖果

    来补一下自己很久以前那个很蒟蒻很蒟蒻的自己没有学懂的知识 差分约束,说白了就是利用我们在求最短路的一个\(relax\)操作时的判断的原理 \[dis[v]>dis[u]+disj(u,v)\] ...

随机推荐

  1. AJax的三种响应

    AJax的响应 1.普通文本方式(字符串) resp.getWriter().print("你好"); 2.JSON格式当要给前台页面传输 集合或者对象时 使用普通文本传输的时St ...

  2. 微信小程序弹窗

    wxml <view class="content"> <button bindtap="popSuccessTest">成功提示弹窗& ...

  3. 2019.12.11 java程序中几种常见的异常以及出现此异常的原因

    1.java.lang.NullpointerException(空指针异常) 原因:这个异常经常遇到,异常的原因是程序中有空指针,即程序中调用了未经初始化的对象或者是不存在的对象. 经常出现在创建对 ...

  4. 【POJ1573】Robot Motion

    题目传送门 本题知识点:模拟 本题的题意也很简单. 给出一个矩阵,矩阵里面有着东南西北(上下左右)的指示,当机器人走到上面时则会按照指示前进.机器人每次都从最上面一行的某一列进入. 需要判断的是机器人 ...

  5. tengine负载均衡高可用配置

    环境 Tengine-master:192.168.109.100 Tengine-slave:192.168.109.101 tomcat01:192.168.109.102 tomcat02:19 ...

  6. Linux+Apache环境下安装SSL证书

    一.安装证书 (温馨提示:安装证书前请先备份您需要修改的服务器配置文件) 1.确认证书文件及证书路径.  例证书文件为:zzidc.com.jks,放置目录为Tomcat的conf目录下.  2.配置 ...

  7. VUE中常用的十大过滤器

    在vue的学习过程中,我发现过滤器是一个很好用的工具,过滤器(Filters)来渲染数据是一种很有趣的方式.过滤器不能替代Vue中的methods.computed或者watch,不改变真正的data ...

  8. 第10组 Beta冲刺(1/5)

    链接部分 队名:女生都队 组长博客: 博客链接 作业博客:博客链接 小组内容 恩泽(组长) 过去两天完成了哪些任务 描述 tomcat的学习与实现 服务器后端部署,API接口的beta版实现 后端代码 ...

  9. 范仁义html+css课程---7、表单

    范仁义html+css课程---7.表单 一.总结 一句话总结: 表单标签的话主要掌握form标签.input标签(以及input标签的不同的type值).select标签.textarea等标签,及 ...

  10. ip地址掩码和位数对应关系表、子网掩码、网络地址、主机地址-yellowcong

    本文链接:https://blog.csdn.net/yelllowcong/article/details/76736594ip的地址掩码,刚开始感觉特别蒙蔽,网掩码都是每段8位二进制,共32位,子 ...