Stirling数入门
第一类Stirling数
定义
$$
\begin{aligned}
(x)_n & =x(x-1)...(x-n+1)\\
&= s(n, 0) + s(n,1)x +..+s(n,n)x^n\\
\end{aligned}$$
例如,$n=3$ 时,
$(x)3 = x(x-1)(x-2)$
$(x)3 = x^0 + 2x -3x^2 + x^3$
于是 $s(3,0)=0,s(3,1)=2,s(3,2)=-3,s(3,3)=1$
有符号斯特林数和无符号斯特林数有如下关系:
$$s(n, k) = (-1)^{n-k}\begin{bmatrix} n\\ k \end{bmatrix}$$
下文的 $s(n, k)$ 都是指的无符号的了。
理解
$n$ 个人围着 $k$ 个相同圆桌,每个桌子非空的方案数就是 $s(n, k)$。
也就是将 $n$ 个不同元素分成 $k$ 组,每组中的元素再进行圆排列的方法数。
例如,$s(4, 2) = 11$
- (A,B)(C,D)
- (A,C)(B,D)
- (A,D)(B,C)
- (A)(B,C,D)
- (A)(B,D,C)
- (B)(A,C,D)
- (B)(A,D,C)
- (C)(A,B,D)
- (C)(A,D,B)
- (D)(A,B,C)
- (D)(A,C,B)
易得一个递推式,
人a独占一桌:$s(n-1, k-1)$
人a不独占一桌:先将 $n-1$ 个人安排好,再将a安排到任一人的右边,$(n-1)*s(n-1, k)$
所以,$s(n, k) = s(n-1. k-1) + (n-1)*s(n-1, k)$
第二类Stirling数
定义
与第一类Stirling数类似,可以用下降阶乘幂定义:
$$x^n = \sum_{k=0}^ns(n, k)(x)_k$$
例如,$n=3$ 时
$$x^3 = s(3, 0)(x)_0 + s(3,1)(x)_1 + s(3,2)(x)_2+s(3,3)(x)_3$$
即 $x^3 = s(3, 0) + s(3,1)x + s(3,2)x(x-1)+s(3,3)x(x-1)(x-2)$
开并合并同类项,得
$$x^3 = s(3,0) + [(3,1)-s(3,2)+2s(3,3)]x + [s(3,2)-3s(3,3)]x^2 + s(3,3)x^3$$
对比系数,解得
$s(3,0)=0, s(3,1)=1,s(3,2)=3,s(3,3)=1$
理解
将含有 $n$ 个元素的集合拆分成 $k$ 个非空子集的方法数就是第二类Stirling数。
也就是将 $n$ 个有区别的球放到 $k$ 个盒子里的方案数。
例如,$s(4,2)=7$(自行前前面对比),
- (A,B)(C,D)
- (A,C)(B,D)
- (A,D)(B,C)
- (A)(B,C,D)
- (B)(A,C,D)
- (C)(A,B,D)
- (D)(A,B,C)
也与第一类Stirling数有类似的递推式(初始条件都相同):
$$s(n, m) = s(n-1, m-1) + m*s(n-1, m)$$
证:
等价于将 $n$ 个有区别的球放到 $k$ 个盒子里的方案数,
若球a独占一盒,$s(n-1, m-1)$
若球a不独占一盒,先将剩下的 $n-1$ 个放入 $m$ 个盒子中且不允许有空盒,再将球a放入其中一盒,$ms(n-1, m)$.
补充:
参考链接:
1.https://blog.csdn.net/doyouseeman/article/details/50876786
2. https://zh.wikipedia.org/wiki/斯特林数
Stirling数入门的更多相关文章
- Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)
Bell Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
- lightOJ 1326 Race(第二类Stirling数)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...
- 斯特灵数 (Stirling数)
@维基百科 在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的. 第一类 s(4,2)=11 第一类Stirling数是有正负的,其绝对值是个元素的项目分 ...
- hdu 4372 第一类stirling数的应用/。。。好题
/** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那 ...
- HDU 3625 Examining the Rooms:第一类stirling数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任 ...
- HDU 4372 Count the Buildings:第一类Stirling数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372 题意: 有n栋高楼横着排成一排,各自的高度为1到n的一个排列. 从左边看可以看到f栋楼,从右边看 ...
- 整理一点与排列组合有关的问题[组合数 Stirling数 Catalan数]
都是数学题 思维最重要,什么什么数都没用,DP直接乱搞(雾.. 参考LH课件,以及资料:http://daybreakcx.is-programmer.com/posts/17315.html 做到有 ...
- [总结] 第二类Stirling数
上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...
- 贝尔数(来自维基百科)& Stirling数
贝尔数 贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列): Bell Number Bn是基数为n的集合 ...
随机推荐
- LeNet-5 卷积神经网络结构图
LeNet-5是Yann LeCun在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一.可以说,Le ...
- jQuery Ajax async=>false异步改为同步时,导致浏览器假死的处理方法
今天做一个需求遇到了这么个情况,就是用户个人中心有个功能,点击按钮,可以刷新用户当前的积分,这个肯定需要使用到ajax的同步请求了,当时喀喀喀三下五除二写玩了,大概代码如下: /** * 异步当前用户 ...
- golang笔记之DOS篇
Dos的常用命令 dos的基本介绍 Dos: Disk Operating System 磁盘操作系统 ,简单说一下Windows下的目录 2. dos的基本操作原理 目录的操作: md ...
- golang错误处理和资源管理
- MySQl数据库面试题
1. MySQL中索引什么作用? 索引的定义和创建的目的 1) 索引是对数据库表中一列或者多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息 2) 索引的分类:主键索引,唯一索引,常规 ...
- vs2013 C++编译器在调试的时候无法看到变量的值
- K8S 中的容器编排和应用编排
众所周知,Kubernetes 是一个容器编排平台,它有非常丰富的原始的 API 来支持容器编排,但是对于用户来说更加关心的是一个应用的编排,包含多容器和服务的组合,管理它们之间的依赖关系,以及如何管 ...
- Python中的 x+=x 与 x = x + x的区别
对于Python中的可变数据类型(列表,字典)来说,+= 和 ..=..+..是不同的 加等是直接在变量的值上面进行操作,会修改了原来变量的值 先等后加会重新分配一个内存空间,不会再原有的变量值上面进 ...
- 为什么UDP有时比TCP更有优势?
随着网络技术飞速发展,网速已不再是传输的瓶颈,UDP协议以其简单.传输快的优势,在越来越多场景下取代了TCP.1.网速的提升给UDP稳定性提供可靠网络保障 CDN服务商Akamai(NASDAQ: A ...
- Bootstrap-实现简单的网站首页
html: <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset=" ...