一般情况,实现全局唯一ID,有三种方案,分别是通过中间件方式、UUID、雪花算法。

  方案一,通过中间件方式,可以是把数据库或者redis缓存作为媒介,从中间件获取ID。这种呢,优点是可以体现全局的递增趋势(优点只能想到这个),缺点呢,倒是一大堆,比如,依赖中间件,假如中间件挂了,就不能提供服务了;依赖中间件的写入和事务,会影响效率;数据量大了的话,你还得考虑部署集群,考虑走代理。这样的话,感觉问题复杂化了

  方案二,通过UUID的方式,java.util.UUID就提供了获取UUID的方法,使用UUID来实现全局唯一ID,优点是操作简单,也能实现全局唯一的效果,缺点呢,就是不能体现全局视野的递增趋势;太长了,UUID是32位,有点浪费;最重要的,是插入的效率低,因为呢,我们使用mysql的话,一般都是B+tree的结构来存储索引,假如是数据库自带的那种主键自增,节点满了,会裂变出新的节点,新节点满了,再去裂变新的节点,这样利用率和效率都很高。而UUID是无序的,会造成中间节点的分裂,也会造成不饱和的节点,插入的效率自然就比较低下了。

  方案三,通过snowflake算法如下:

  SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

    

  

  • 1位,不用。二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0
  • 41位,用来记录时间戳(毫秒)。

    • 41位可以表示$2^{41}-1$个数字,
    • 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 $2^{41}-1$,减1是因为可表示的数值范围是从0开始算的,而不是1。
    • 也就是说41位可以表示$2^{41}-1$个毫秒的值,转化成单位年则是$(2^{41}-1) / (1000 * 60 * 60 * 24 * 365) = 69$年
  • 10位,用来记录工作机器id。

    • 可以部署在$2^{10} = 1024$个节点,包括5位datacenterId5位workerId
    • 5位(bit)可以表示的最大正整数是$2^{5}-1 = 31$,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId
  • 12位,序列号,用来记录同毫秒内产生的不同id。

    • 12位(bit)可以表示的最大正整数是$2^{12}-1 = 4095$,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号

  由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

  SnowFlake可以保证:

  • 所有生成的id按时间趋势递增
  • 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

  以下是Twitter官方原版的,用Scala写的:

 /** Copyright 2010-2012 Twitter, Inc.*/
package com.twitter.service.snowflake import com.twitter.ostrich.stats.Stats
import com.twitter.service.snowflake.gen._
import java.util.Random
import com.twitter.logging.Logger /**
* An object that generates IDs.
* This is broken into a separate class in case
* we ever want to support multiple worker threads
* per process
*/
class IdWorker(val workerId: Long, val datacenterId: Long, private val reporter: Reporter, var sequence: Long = 0L)
extends Snowflake.Iface {
private[this] def genCounter(agent: String) = {
Stats.incr("ids_generated")
Stats.incr("ids_generated_%s".format(agent))
}
private[this] val exceptionCounter = Stats.getCounter("exceptions")
private[this] val log = Logger.get
private[this] val rand = new Random val twepoch = 1288834974657L private[this] val workerIdBits = 5L
private[this] val datacenterIdBits = 5L
private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)
private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)
private[this] val sequenceBits = 12L private[this] val workerIdShift = sequenceBits
private[this] val datacenterIdShift = sequenceBits + workerIdBits
private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits
private[this] val sequenceMask = -1L ^ (-1L << sequenceBits) private[this] var lastTimestamp = -1L // sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
exceptionCounter.incr(1)
throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId))
} if (datacenterId > maxDatacenterId || datacenterId < 0) {
exceptionCounter.incr(1)
throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId))
} log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId) def get_id(useragent: String): Long = {
if (!validUseragent(useragent)) {
exceptionCounter.incr(1)
throw new InvalidUserAgentError
} val id = nextId()
genCounter(useragent) reporter.report(new AuditLogEntry(id, useragent, rand.nextLong))
id
} def get_worker_id(): Long = workerId
def get_datacenter_id(): Long = datacenterId
def get_timestamp() = System.currentTimeMillis protected[snowflake] def nextId(): Long = synchronized {
var timestamp = timeGen() if (timestamp < lastTimestamp) {
exceptionCounter.incr(1)
log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format(
lastTimestamp - timestamp))
} if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp)
}
} else {
sequence = 0
} lastTimestamp = timestamp
((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence
} protected def tilNextMillis(lastTimestamp: Long): Long = {
var timestamp = timeGen()
while (timestamp <= lastTimestamp) {
timestamp = timeGen()
}
timestamp
} protected def timeGen(): Long = System.currentTimeMillis() val AgentParser = """([a-zA-Z][a-zA-Z\-0-9]*)""".r def validUseragent(useragent: String): Boolean = useragent match {
case AgentParser(_) => true
case _ => false
}
}

  Java版:

 package com.test.util;
/**
* Twitter_Snowflake<br>
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*/
public class SnowflakeIdWorker { // ==============================Fields===========================================
/** 开始时间截 (2015-01-01) */
private final long twepoch = 1420041600000L; /** 机器id所占的位数 */
private final long workerIdBits = 5L; /** 数据标识id所占的位数 */
private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大数据标识id,结果是31 */
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位数 */
private final long sequenceBits = 12L; /** 机器ID向左移12位 */
private final long workerIdShift = sequenceBits; /** 数据标识id向左移17位(12+5) */
private final long datacenterIdShift = sequenceBits + workerIdBits; /** 时间截向左移22位(5+5+12) */
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作机器ID(0~31) */
private long workerId; /** 数据中心ID(0~31) */
private long datacenterId; /** 毫秒内序列(0~4095) */
private long sequence = 0L; /** 上次生成ID的时间截 */
private long lastTimestamp = -1L; //==============================Constructors=====================================
/**
* 构造函数
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowflakeIdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
} // ==============================Methods==========================================
/**
* 获得下一个ID (该方法是线程安全的)
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen(); //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} //如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
} //上次生成ID的时间截
lastTimestamp = timestamp; //移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift) //
| (datacenterId << datacenterIdShift) //
| (workerId << workerIdShift) //
| sequence;
} /**
* 阻塞到下一个毫秒,直到获得新的时间戳
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} /**
* 返回以毫秒为单位的当前时间
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
} //==============================Test=============================================
/** 测试 */
public static void main(String[] args) {
SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0); for (int i = 0; i < 100; i++) {
long id = idWorker.nextId();
System.out.println(Long.toBinaryString(id));
System.out.println(id);
}
}
}

【Java】分布式自增ID算法---雪花算法 (snowflake,Java版)的更多相关文章

  1. 全局ID生成--雪花算法

    分布式ID常见生成策略: 分布式ID生成策略常见的有如下几种: 数据库自增ID. UUID生成. Redis的原子自增方式. 数据库水平拆分,设置初始值和相同的自增步长. 批量申请自增ID. 雪花算法 ...

  2. 分布式ID生成 - 雪花算法

    雪花算法是一种生成分布式全局唯一ID的经典算法,关于雪花算法的解读网上多如牛毛,大多抄来抄去,这里请参考耕耘的小象大神的博客ID生成器,Twitter的雪花算法(Java) 网上的教程一般存在两个问题 ...

  3. Twitter分布式自增ID算法snowflake原理解析

    以JAVA为例 Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个 ...

  4. 分布式唯一ID生成算法-雪花算法

    在我们的工作中,数据库某些表的字段会用到唯一的,趋势递增的订单编号,我们将介绍两种方法,一种是传统的采用随机数生成的方式,另外一种是采用当前比较流行的“分布式唯一ID生成算法-雪花算法”来实现. 一. ...

  5. Twitter分布式自增ID算法snowflake原理解析(Long类型)

    Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个Long类型的6 ...

  6. 详解Twitter开源分布式自增ID算法snowflake(附演算验证过程)

    详解Twitter开源分布式自增ID算法snowflake,附演算验证过程 2017年01月22日 14:44:40 url: http://blog.csdn.net/li396864285/art ...

  7. 分布式自增ID算法-Snowflake详解

    1.Snowflake简介 互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并 ...

  8. 分布式ID的雪花算法及坑

    分布式ID生成是目前系统的常见刚需,其中以Twitter的雪花算法(Snowflake)比较知名,有Java等各种语言的版本及各种改进版本,能生成满足分布式ID,返回ID为Long长整数 但是这里有一 ...

  9. 适用于分布式ID的雪花算法

    基于Java实现的适用于分布式ID的雪花算法工具类,这里存一下日后好找 /** * 雪花算法生成ID */ public class SnowFlakeUtil { private final sta ...

  10. ID生成 雪花算法

    /** * ID生成 雪花算法 */ public class SnowFlake { public static SnowFlake getInstance() { return Singleton ...

随机推荐

  1. xss获取cookie源码附利用代码

    保存为cookie.asp <% testfile=Server.MapPath("cookies.txt") msg=Request("msg") se ...

  2. LG4351 [CERC2015]Frightful Formula

    Frightful Formula 给你一个\(n\times n\)矩阵的第一行和第一列,其余的数通过如下公式推出: \[f_{i,j}=a\cdot f_{i,j-1}+b\cdot f_{i-1 ...

  3. Apollo简介及工作原理

    一.Apollo简介 1.Apollo是携程框架部门研发的分布式配置中心 2.集中化管理应用的不同环境和不同集群的配置 3.配置修改后能够实时推送到应用端 4.具备规范的权限.流程治理等特性 二.Ap ...

  4. SIGAI机器学习第二十一集 AdaBoost算法2

    讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用. 大纲: ...

  5. winform DateTimePicker 设置成秒

    C# Windows窗体应用中,用到时间选择控件DateTimePicker,发现不能选择时分秒,难道要自己写一个控件?! 答案是否定的,通过属性修改是可以选择时间的,DateTimePicker完全 ...

  6. Base64原理解析与使用

    一.Base64编码由来 为什么会有Base64编码呢?因为有些网络传送渠道并不支持所有的字节,例如传统的邮件只支持可见字符的传送,像ASCII码的控制字符就 不能通过邮件传送.这样用途就受到了很大的 ...

  7. 2-使用git管理一个单片机程序

    https://www.cnblogs.com/yangfengwu/p/10842205.html 我用电脑压缩一个文件,然后通过git上传,然后在新买的linux系统通过wget 网络下载这个压缩 ...

  8. docker使(二)—发布node应用镜像和容器

    应用在本地是已经ok的了,现在将node应用放进docker容器里面 获取node镜像 docker pull node 编写Dokerfile # 根据node镜像开始创建新的镜像(可以加上:tag ...

  9. ZwQuerySystemInfoMation函数使用

    ZwQueryInfoMation函数很简单.就是4个参数. NTSTATUS WINAPI ZwQuerySystemInformation( _In_ SYSTEM_INFORMATION_CLA ...

  10. JSON HiJacking攻击

    JSON劫持类似于CSRF攻击,为了了解这种攻击方式,我们先看一下Web开发中一种常用的跨域获取数据的方式:JSONP. 先说一下JSON吧,JSON是一种数据格式,主要由字典(键值对)和列表两种存在 ...